Published

2018-07-01

Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide)

Correlación empírica entre parámetros geotécnicos y geofísicos en la zona de un deslizamiento de tierra. Caso de estudio: Deslizamiento de Nargeschal

DOI:

https://doi.org/10.15446/esrj.v22n3.69491

Keywords:

Ambient noise, ERT, Geophysical investigation, Geotechnical investigation, Empirical correlation, (en)
Ruido de fondo, prospección eléctrica, investigación geofísica, investigación geotécnica, (es)

Downloads

Authors

  • Sadegh Rezaei Babol Noshirvani University of Technology
  • Issa Shooshpasha Babol Noshirvani University of Technology
  • Hamed Rezaei Golestan University

Today, geotechnical and geophysical techniques are used for landslide evaluation. Geotechnical methods provide accurate data, but are time consuming and costly. Geophysical techniques, however, are fast and inexpensive, yet their accuracy is lower than that of the geotechnical methods. Therefore, simultaneous use of geotechnical and geophysical methods provides a suitable solution for landslide evaluation. Availability of geotechnical and geophysical data makes it possible to investigate correlation between different parameters. Correlating geotechnical and geophysical parameters ends up lowering field investigation costs and enhancing subsurface survey speed in a landslide zone. In the present study, in order to evaluate Nargeschal landslide in Iran, ambient noise measurement, ERT survey, and geotechnical investigations were used. Once finished with data processing, the data obtained from geotechnical and geophysical investigations were correlated. These included SPT-N – electrical resistivity, soil moisture content – electrical resistivity, and SPT-N – shear wave velocity correlations. The correlations were examined using two methods, namely Spearman’s coefficient test and least square regression analysis. The results obtained from the two methods were in good agreement with one another. The correlations obtained in this study were of moderate to very strong strength and fell in the range of the results of previous studies. Investigation of the results indicated significant influences of ground water on electrical resistivity and soil stiffness on shear wave velocity. Results of this study can be used for soil classification and determination of mechanical and seismic characteristics of soil across various areas.

Actualmente, las técnicas geotécnicas y geofísicas se utilizan en la evaluación de los deslizamientos de tierra. Los métodos geotécnicos proveen información exacta pero son costosos y requieren de tiempo. Las técnicas geofísicas, son rápidas y económicas a pesar de que su exactitud es menor a la ofrecida por los métodos geotécnicos. El uso simultáneo de métodos geofísicos y geotécnicos provee una solución adecuada en la evaluación de estos movimientos en masa. La disponibilidad de información geotécnica y geofísica hace posible investigar la correlación entre los diferentes parámetros. Esta correlación permite una reducción en los costos de la investigación y agiliza la medición subsuperficial en las zonas de deslizamiento. En este estudio, con el fin de evaluar el deslizamiento de Nargeschal en Irán, se utilizaron medidas de ruido de fondo, prospección eléctrica, e investigaciones geotécnicas. Una vez terminado el procesamiento de los datos, se correlacionó la información obtenida de los análisis geotécnicos y geofísicos. Estos incluyen correlaciones ensayo de penetración estándar- prospección eléctrica, contenido de humedad del suelo-prospección eléctrica, y ensayo de penetración estándar-velocidad onda de corte. Las correlaciones se examinaron a través de dos métodos, llamados la prueba de coeficiente de Spearman y el análisis de regresión de mínimos cuadrados. Los resultados obtenidos a través de los dos métodos coinciden entre sí. Las correlaciones obtenidas en este estudio fueron de fuerza moderada a muy fuerte y se enmarcan en los resultados de estudios previos. El análisis de los resultados señalaron fuertes influencias del agua subterránea en la prospección eléctrica y la rigidez del suelo en la velocidad de la onda de corte. Los resultados de este estudio se pueden utilizar para la clasificación del suelo y la determinación de características mecánicas y sísmicas del suelo a través de varias áreas.

References

Abidin, M. H. Z., Saad, R., Ahmad, F., Wijeyesekera, D. C., & Baharuddin, M. F. T. (2014). Correlation analysis between field electrical resistivity value (ERV) and basic geotechnical properties (BGP). Soil Mechanics and Foundation Engineering, 51(3), 117-125.

Ahmed, H. (1989). Application of mode-converted shear waves to rock-property estimation from vertical seismic profiling data. Geophysics, 54(4), 478-485.

Akpan, A. E., Ilori, A. O., & Essien, N. U. (2015). Geophysical investigation of Obot Ekpo landslide site, Cross River state, Nigeria. Journal of African Earth Sciences, 109, 154-167.

Anbazhagan, P., Bajaj, K., Reddy, G. R., Phanikanth, V. S., & Yadav, D. N. (2016). Quantitative assessment of shear wave velocity correlations in the shallow bedrock sites. Indian Geotechnical Journal, 46(4), 381-397.

Asten, M. W., Aysegul, A., Ezgi, E. E., Nurten, S. F., & Beliz, U. (2014). Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise. Exploration Geophysics, 45, 74-85.

Bard, P. Y. (1999). Microtremor measurements: a tool for site effect estimation, Second International Symposium on the Effects of Surface Geology on Seismic Motion, Yokohama, Japan, December, 1251-1279.

Borges, J. F., Silva, H. G., Torres, R. J. G., Caldeira, B., Bezzeghoud, M., Furtado, J. A., & Carvalho, J. (2016). Inversion of ambient seismic noise HVSR to evaluate velocity and structural models of the Lower Tagus basin, Portugal. Journal of Seismology, 20(3), 875-887.

Büyüksaraç, A., Över, S., Geneş, M. C., Bikçe, M., Kaçin, S., & Bektaş, Ö. (2014). Estimating shear wave velocity using acceleration data in Antakya (Turkey). Earth Sciences Research Journal, 18(2), 87-98.

Calamita, G., Brocca, L., Perrone, A., Piscitelli, S., Lapenna, V., Melone, F., & Moramarco, T. (2012). Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites. Journal of Hydrology, 454, 101-112.

Choobbasti, A. J., Rezaei, S., & Farrokhzad, F. (2013). Evaluation of site response characteristics using microtremors. Gradevinar, 65(8), 731-741.

Cosenza, P., Marmet, E., Rejiba, F., Cui, Y. J., Tabbagh, A., & Charlery, Y. (2006). Correlations between geotechnical and electrical data: a case study at Garchy in France. Journal of Applied Geophysics, 60(3), 165-178.

Crawford, M. M., Zhu, J., & Webb, S. E. (2015). Geologic, geotechnical, and geophysical investigation of a shallow landslide, eastern Kentucky. Environmental & Engineering Geoscience, 21(3), 181-195.

Del Gaudio, V., Muscillo, S., & Wasowski, J. (2014). What we can learn about slope response to earthquakes from ambient noise analysis: an overview. Engineering Geology, 182, 182-200.

Devi, A., Israil, M., Anbalagan, R., & Gupta, P. K. (2017). Subsurface soil characterization using geoelectrical and geotechnical investigations at a bridge site in Uttarakhand Himalayan region. Journal of Applied Geophysics, 144, 78-85.

Fallah-Safari, M., Hafizi, M. K., & Ghalandarzadeh, A. (2013). The relationship between clay geotechnical data and clay electrical resistivity. Bollettino di Geofisica Teorica ed Applicata, 54(1), 23-38.

Gautam, D. (2017). Empirical correlation between uncorrected standard penetration resistance (N) and shear wave velocity (VS) for Kathmandu valley, Nepal. Geomatics, Natural Hazards and Risk, 8(2), 496-508.

Giao, P. H., Chung, S. G., Kim, D. Y., & Tanaka, H. (2003). Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits. Journal of Applied Geophysics, 52(4), 157-175.

Gui-Sheng, H., Ning-Sheng, C., Javed Iqbal, T., Yong, Y., & Jun, L. (2016). Case study of the characteristics and dynamic process of July 10, 2013, catastrophic debris flows in Wenchuan County, China. Earth Sciences Research Journal, 20(2), 1-13.

Hatta, K. A., Osman, S., & Azahar, S. B. (2015). Correlation of electrical resistivity and SPT-N value from standard penetration test (SPT) of sandy soil. Applied Mechanics and Materials, 785, 702-706.

Hiltunen, D. R. (2005). Practical applications of engineering geophysics to help solve tough problems and lead to improved technologies, Soil Dynamics Symposium in Honor of Professor Richard D. Woods, Austin, USA, January, 1-15.

Işık, N. S., Doyuran, V., & Ulusay, R. (2004). Assessment of a coastal landslide subjected to building loads at Sinop, Black Sea region, Turkey, and stabilization measures. Engineering geology, 75(1), 69-88.

Jusoh, H., & Osman, S. B. S. (2017). The correlation between resistivity and soil properties as an alternative to soil investigation. Indian Journal of Science and Technology. DOI: 10.17485/ijst/2017/v10i6/111205.

Kibria, G., & Hossain, M. S. (2012). Investigation of geotechnical parameters affecting electrical resistivity of compacted clays. Journal of Geotechnical and Geoenvironmental Engineering, 138(12), 1520-1529.

Kirar, B., Maheshwari, B. K., & Muley, P. (2016). Correlation between shear wave velocity (vs) and SPT resistance (N) for Roorkee region. International Journal of Geosynthetics and Ground Engineering, 2(1), 9.

Lehmann, E. L. (2006). Nonparametrics Statistical Methods Based on Ranks, Springer-Verlag New York, New York, USA, 464 pp.

Lin, J., Cai, G., Liu, S., Puppala, A. J., & Zou, H. (2017). Correlations between electrical resistivity and geotechnical parameters for Jiangsu marine clay using Spearman’s coefficient test. International Journal of Civil Engineering, 15(3), 419-429.

Ling, C., Xu, Q., Zhang, Q., Ran, J., & Lv, H. (2016). Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, southwest China). Journal of Applied Geophysics, 131, 154-162.

Liu, S. Y., Du, Y. J., Han, L. H., & Gu, M. F. (2008). Experimental study on the electrical resistivity of soil–cement admixtures. Environmental Geology, 54(6), 1227-1233.

Long, M., Donohue, S., L’Heureux, J. S., Solberg, I. L., Rønning, J. S., Limacher, R., O’Connor, P., Sauvin, G., Rømoen, M., & Lecomte, I. (2012). Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Canadian Geotechnical Journal, 49(10), 1158-1168.

Lopes, I., Santos, J. A., & Gomes, R. C. (2014). VS profile: measured versus empirical correlations—a Lower Tagus river valley example. Bulletin of Engineering Geology and the Environment, 73(4), 1127-1139.

Lotti, A. (2014). Investigation of a rockslide from its local seismic response. Ph.D. Thesis, School of Scienze Della Terra, University of Florence, Florence, Italy.

Merritt, A. J., Chambers, J. E., Murphy, W., Wilkinson, P. B., West, L. J., Gunn, D. A., Meldrum, P. I., Kirkham, M., & Dixon, N. (2014). 3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides, 11(4), 537-550.

Nejad, M. M., Momeni, M. S., & Manahiloh, K. N. (2018). Shear wave velocity and soil type microzonation using neural networks and geographic information system. Soil Dynamics and Earthquake Engineering, 104, 54-63.

Mundepi, A. K., Galiana-Merino, J. J., Asthana, A. K. L., & Rosa-Cintas, S. (2015). Soil characteristics in Doon valley (north west Himalaya, India) by inversion of H/V spectral ratios from ambient noise measurements. Soil Dynamics and Earthquake Engineering, 77, 309-320.

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1), 25-33.

Oh, S., & Sun, C. G. (2008). Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam. Environmental Geology, 54(1), 31-42.

Osman, S., Baharom, S., & Siddiqui, F. I. (2014). Correlation of electrical resistivity with some soil parameters for the development of possible prediction of slope stability and bearing capacity of soil using electrical parameters. Pertanika Journal Scince and Technology, 22(1), 139-152.

Ozcep, F., Tezel, O., & Asci, M. (2009). Correlation between electrical resistivity and soil-water content: Istanbul and Golcuk. International Journal of Physical Sciences, 4(6), 362-365.

Pischiutta, M., Villani, F., D'Amico, S., Vassallo, M., Cara, F., Di Naccio, D., Farrugia, D., Di Giulio, G., Amoroso, S., Cantore, L., Mercuri, A., Famiani, D., Galea, P., Akinci, A., & Rovelli, A. (2017). Results from shallow geophysical investigations in the northwestern sector of the island of Malta. Physics and Chemistry of the Earth, Parts A/B/C, 98, 41-48.

Pourghasemi, H. R., Moradi, H. R., Mohammadi, M., Pradhan, B., Mostafazadeh, R., & Goli Jirandeh, A. (2012). Landslide hazard assessment using remote sensing data, GIS and weights-of-evidence model (south of Golestan province, Iran), Asia Pacific Conference on Environmental Science and Technology, Kuala Lumpur, Malaysia, February, 6, 30-36.

Rahman, M. Z., Kamal, A. M., & Siddiqua, S. (2018). Near-surface shear wave velocity estimation and V s 30 mapping for Dhaka City, Bangladesh. Natural Hazards, DOI: 10.1007/s11069-018-3266-3

Rezaei, S., Shooshpasha, I., & Rezaei, H. (2018). Evaluation of landslides using ambient noise measurements (case study: Nargeschal landslide). International Journal of Geotechnical Engineering, DOI: 10.1080/19386362.2018.1431354

Rezaei, S., & Choobbasti, A. J. (2017a). Evaluation of local site effect from microtremor measurements in Babol city, Iran. Journal of Seismology, DOI: 10.1007/s10950-017-9718-5

Rezaei, S., & Choobbasti, A. J. (2017b). Application of the microtremor measurements to a site effect study. Earthquake Science, 30(3), 157-164.

Rezaei, S., Choobbasti, A. J., & Kutanaei, S. S. (2015). Site effect assessment using microtremor measurement, equivalent linear method, and artificial neural network (case study: Babol, Iran). Arabian Journal of Geosciences, 8(3), 1453-1466.

Rezaei, S., & Choobbasti, A. J. (2014). Liquefaction assessment using microtremor measurement, conventional method and artificial neural network (case study: Babol, Iran). Frontiers of Structural and Civil Engineering, 8(3), 292-307.

Salinas-Jasso, J. A., Montalvo-Arrieta, J. C., Alva-Niño, E., de León, I. N., & Gómez-González, J. M. (2017). Seismic site effects in the central zone of Monterrey metropolitan area (northeast Mexico) from a geotechnical multidisciplinary assessment. Bulletin of Engineering Geology and the Environment, DOI: 10.1007/s10064-017-1065-9.

Shemang, E. M., Molwalefhe, L. N., & Mickus, K. (2013). Applying DC resistivity imaging to investigating the relationship between water quality and transpiration beneath circular islands in the Okavango delta, Botswana: a case study of Thata Island. Earth Sciences Research Journal, 17(1), 25-32.

Siddiqui, F. I., & Osman, S. B. A. B. S. (2013). Simple and multiple regression models for relationship between electrical resistivity and various soil properties for soil characterization. Environmental earth sciences, 70(1), 259-267.

Sil, A., & Haloi, J. (2017). Empirical correlations with standard penetration test (SPT)-N for estimating shear wave velocity applicable to any region. International Journal of Geosynthetics and Ground Engineering, 3(3), 22.

Soto, J., Galve, J. P., Palenzuela, J. A., Azañón, J. M., Tamay, J., & Irigaray, C. (2017). A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador). Landslides, DOI: 10.1007/s10346-017-0830-y.

Sudha, K., Israil, M., Mittal, S., & Rai, J. (2009). Soil characterization using electrical resistivity tomography and geotechnical investigations. Journal of Applied Geophysics, 67(1), 74-79.

Suryo, E. A. (2013). Real-time prediction of rainfall induced instability of residual soil slopes associated with deep cracks. Ph.D. Thesis, School of Science and Engineering, Queensland University of Technology, Brisbane, Australia.

Szokoli, K., Szarka, L., Metwaly, M., Kalmár, J., Prácser, E., & Szalai, S. (2017). Characterisation of a landslide by its fracture system using electric resistivity tomography and pressure probe methods. Acta Geodaetica et Geophysica. DOI: 10.1007/s40328-017-0199-3.

Thokchom, S., Rastogi, B. K., Dogra, N. N., Pancholi, V., Sairam, B., Bhattacharya, F., & Patel, V. (2017). Empirical correlation of SPT blow counts versus shear wave velocity for different types of soils in Dholera, western India. Natural Hazards, 86(3), 1291-1306.

Topsakal, E., & Topal, T. (2015). Slope stability assessment of a re-activated landslide on the Artvin-Savsat junction of a provincial road in Meydancik, Turkey. Arabian Journal of Geosciences, 8(3), 1769-1786.

Ullah, I., & Prado, R. L. (2017). Soft sediment thickness and shear-wave velocity estimation from the H/V technique up to the bedrock at meteorite impact crater site, Sao Paulo city, Brazil. Soil Dynamics and Earthquake Engineering, 94, 215-222.

Yılmaz, S., & Narman, C. (2015). 2-D electrical resistivity imaging for investigating an active landslide along a ridgeway in Burdur region, southern Turkey. Arabian Journal of Geosciences, 8(5), 3343-3349.

Yordkayhun, S., Sujitapan, C., & Chalermyanont, T. (2014). Joint analysis of shear wave velocity from SH-wave refraction and MASW techniques for SPT-N estimation. Songklanakarin Journal of Science and Technology, 36, 333-344.

Zarroca, M., Linares, R., Roqué, C., Rosell, J., & Gutiérrez, F. (2014). Integrated geophysical and morphostratigraphic approach to investigate a coseismic (?) translational slide responsible for the destruction of the Montclús village (Spanish Pyrenees). Landslides, 11(4), 655-671.

Zuccarello, L., Paratore, M., La Rocca, M., Ferrari, F., Messina, A., Branca, S., Contrafatto, D., Galluzzo, D., Rapisarda, S., & García, L. (2016). Shallow velocity model in the area of Pozzo Pitarrone, Mt. Etna, from single station, array methods and borehole data. Annals of Geophysics, 59(4), 0433.

How to Cite

APA

Rezaei, S., Shooshpasha, I. and Rezaei, H. (2018). Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide). Earth Sciences Research Journal, 22(3), 195–204. https://doi.org/10.15446/esrj.v22n3.69491

ACM

[1]
Rezaei, S., Shooshpasha, I. and Rezaei, H. 2018. Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide). Earth Sciences Research Journal. 22, 3 (Jul. 2018), 195–204. DOI:https://doi.org/10.15446/esrj.v22n3.69491.

ACS

(1)
Rezaei, S.; Shooshpasha, I.; Rezaei, H. Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide). Earth sci. res. j. 2018, 22, 195-204.

ABNT

REZAEI, S.; SHOOSHPASHA, I.; REZAEI, H. Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide). Earth Sciences Research Journal, [S. l.], v. 22, n. 3, p. 195–204, 2018. DOI: 10.15446/esrj.v22n3.69491. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/69491. Acesso em: 19 jul. 2024.

Chicago

Rezaei, Sadegh, Issa Shooshpasha, and Hamed Rezaei. 2018. “Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide)”. Earth Sciences Research Journal 22 (3):195-204. https://doi.org/10.15446/esrj.v22n3.69491.

Harvard

Rezaei, S., Shooshpasha, I. and Rezaei, H. (2018) “Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide)”, Earth Sciences Research Journal, 22(3), pp. 195–204. doi: 10.15446/esrj.v22n3.69491.

IEEE

[1]
S. Rezaei, I. Shooshpasha, and H. Rezaei, “Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide)”, Earth sci. res. j., vol. 22, no. 3, pp. 195–204, Jul. 2018.

MLA

Rezaei, S., I. Shooshpasha, and H. Rezaei. “Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide)”. Earth Sciences Research Journal, vol. 22, no. 3, July 2018, pp. 195-04, doi:10.15446/esrj.v22n3.69491.

Turabian

Rezaei, Sadegh, Issa Shooshpasha, and Hamed Rezaei. “Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide)”. Earth Sciences Research Journal 22, no. 3 (July 1, 2018): 195–204. Accessed July 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/69491.

Vancouver

1.
Rezaei S, Shooshpasha I, Rezaei H. Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide). Earth sci. res. j. [Internet]. 2018 Jul. 1 [cited 2024 Jul. 19];22(3):195-204. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/69491

Download Citation

CrossRef Cited-by

CrossRef citations22

1. Agnese Innocenti, Ascanio Rosi, Veronica Tofani, Veronica Pazzi, Elisa Gargini, Elena Benedetta Masi, Samuele Segoni, Davide Bertolo, Marco Paganone, Nicola Casagli. (2023). Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling. Remote Sensing, 15(8), p.2159. https://doi.org/10.3390/rs15082159.

2. Anisa Zairina, Soemarno Soemarno, Arief Rachmansyah, Bagyo Yanuwiadi. (2024). Geophysical, geotechnical, and vegetation characteristics in landslide areas in Pujon and Ngantang, Malang Regency, East Java. Journal of Degraded and Mining Lands Management, 11(2), p.5211. https://doi.org/10.15243/jdmlm.2024.112.5211.

3. Philips Omowumi Falae, Debi Prasanna Kanungo, Pradeep Kumar Singh Chauhan, Rajesh Kumar Dash. (2019). Electrical resistivity tomography (ERT) based subsurface characterisation of Pakhi Landslide, Garhwal Himalayas, India. Environmental Earth Sciences, 78(14) https://doi.org/10.1007/s12665-019-8430-x.

4. Felicia França Pereira, Tatiana Sussel Gonçalves Mendes, Silvio Jorge Coelho Simões, Márcio Roberto Magalhães de Andrade, Mário Luiz Lopes Reiss, Jennifer Fortes Cavalcante Renk, Tatiany Correia da Silva Santos. (2023). Comparison of LiDAR- and UAV-derived data for landslide susceptibility mapping using Random Forest algorithm. Landslides, 20(3), p.579. https://doi.org/10.1007/s10346-022-02001-7.

5. Huajian Yang, Zhikui Liu. (2024). A fused sampling method integrating geotechnical and geophysical data for assessing three-dimensional soil liquefaction-induced damage capacity. Computers and Geotechnics, 166, p.106024. https://doi.org/10.1016/j.compgeo.2023.106024.

6. Aakriti Sharma, Manojit Samanta, D.P. Kanungo. (2024). Site-Specific correlation between geotechnical and geoelectrical properties of soil deposits in India. Journal of Applied Geophysics, 221, p.105288. https://doi.org/10.1016/j.jappgeo.2024.105288.

7. Demanou Messe Malick Rosvelt, Kenfack Jean Victor, Bomeni Isaac yannick, Ngapgue François, Wouatong Armand Sylvain Ludovic. (2022). Geotechnical soil mapping from electrical and mechanical properties: Case study of the Bafoussam urban area, west Cameroon. Applied Computing and Geosciences, 13, p.100078. https://doi.org/10.1016/j.acags.2021.100078.

8. Anjie Jin, Shasha Yang, Xuri Huang. (2024). Landslide displacement prediction based on time series and long short-term memory networks. Bulletin of Engineering Geology and the Environment, 83(7) https://doi.org/10.1007/s10064-024-03714-w.

9. Yu Zhuang, Aiguo Xing, Yangyang Leng, Muhammad Bilal, Yanbo Zhang, Kaiping Jin, Junyi He. (2021). Investigation of Characteristics of Long Runout Landslides Based on the Multi-source Data Collaboration: A Case Study of the Shuicheng Basalt Landslide in Guizhou, China. Rock Mechanics and Rock Engineering, 54(8), p.3783. https://doi.org/10.1007/s00603-021-02493-0.

10. Andrea Brunelli, Filomena de Silva, Serena Cattari. (2022). Observed and simulated urban-scale seismic damage of masonry buildings in aggregate on soft soil: The case of Visso hit by the 2016/2017 Central Italy earthquake. International Journal of Disaster Risk Reduction, 83, p.103391. https://doi.org/10.1016/j.ijdrr.2022.103391.

11. A Tohari, D D Wardhana, S Feranie, G A Salsabila. (2024). Identification of sliding surface using electrical-resistivity tomography for landslide mitigation: A case study of the Cibitung Landslide. IOP Conference Series: Earth and Environmental Science, 1314(1), p.012030. https://doi.org/10.1088/1755-1315/1314/1/012030.

12. Ilias Obda, Younes El Kharim, Ali Bounab, Abderrahim Lahrach, Mohammed Ahniche, Hamou Mansouri. (2022). Multi-criteria assessment approach of slow-moving urban landslide hazard: the case of Moulay Yacoub, Morocco. Canadian Journal of Earth Sciences, 59(5), p.300. https://doi.org/10.1139/cjes-2021-0064.

13. Zhiwen Sun, Zhihan Fan, Chaoqi Zhu, Kai Li, Zhongqiang Sun, Xiaoshuai Song, Liang Xue, Hanlu Liu, Yonggang Jia. (2023). Study on the Relationship between Resistivity and the Physical Properties of Seafloor Sediments Based on the Deep Neural Learning Algorithm. Journal of Marine Science and Engineering, 11(5), p.937. https://doi.org/10.3390/jmse11050937.

14. Mina Zamanian, Pooya Darghiasi, Mohsen Shahandashti. (2024). Empirical Study of the Correlation between Geoelectrical and Soil-Index Properties of Clayey Soils. Construction Research Congress 2024. , p.731. https://doi.org/10.1061/9780784485279.073.

15. Angela Perrone. (2021). Lessons learned by 10 years of geophysical measurements with Civil Protection in Basilicata (Italy) landslide areas. Landslides, 18(4), p.1499. https://doi.org/10.1007/s10346-020-01584-3.

16. Arturo S. Daag, Oliver Paul C. Halasan, Arielle Anne T. Magnaye, Rhommel N. Grutas, Renato U. Solidum. (2022). Empirical Correlation between Standard Penetration Resistance (SPT-N) and Shear Wave Velocity (Vs) for Soils in Metro Manila, Philippines. Applied Sciences, 12(16), p.8067. https://doi.org/10.3390/app12168067.

17. Sadegh Rezaei, Asskar Janalizadeh Choobbasti. (2020). Site response evaluation through measuring the ambient noise (case study: Iran, Babol City). Innovative Infrastructure Solutions, 5(1) https://doi.org/10.1007/s41062-020-0272-6.

18. A. Hegde, Abhishek Anand. (2022). Resistivity Correlations with SPT-N and Shear Wave Velocity for Patna Soil in India. Indian Geotechnical Journal, 52(1), p.161. https://doi.org/10.1007/s40098-020-00492-6.

19. Ammar Chibani, Kamel Hebbache, Mekki Mellas, Abdelhak Mabrouki. (2023). 2D electrical resistivity tomography (ERT) investigation of a landslide: A case study from Ali Mendjeli, Constantine, North-East of Algeria. NRIAG Journal of Astronomy and Geophysics, 12(1), p.45. https://doi.org/10.1080/20909977.2022.2163787.

20. Nouwa Ngouateu Bertol Victor Flanclin, Kenfack Jean Victor, Kegni Lucas, Tsobmo Baleba II. Hallelua De Tambou. (2024). Predicting soil parameters in Maroua 1st, Cameroon, using correlations of geophysical and geotechnical data. Heliyon, 10(8), p.e29589. https://doi.org/10.1016/j.heliyon.2024.e29589.

21. Mohsen Kazemnia Kakhki, Vincenzo Del Gaudio, Sadegh Rezaei, Webe João Mansur. (2021). Directional variations of site response in a landslide area using ambient noise analysis via Nakamura’s and polarization-based method. Soil Dynamics and Earthquake Engineering, 141, p.106492. https://doi.org/10.1016/j.soildyn.2020.106492.

22. Jiabao Xu, Yu Wang, Lulu Zhang. (2022). Fusion of geotechnical and geophysical data for 2D subsurface site characterization using multi-source Bayesian compressive sampling. Canadian Geotechnical Journal, 59(10), p.1756. https://doi.org/10.1139/cgj-2021-0323.

Dimensions

PlumX

Article abstract page views

839

Downloads

Download data is not yet available.