Published
Hydraulic fracturing considerations: Insights from analogue models, and its viability in Colombia
Consideraciones del Fracturamiento hidráulico: a partir de modelos análogos y su viabilidad en Colombia
DOI:
https://doi.org/10.15446/esrj.v23n1.69760Keywords:
Analogue Models, Fracking, Aquifer. (en)modelos análogos, Fracking, acuíferos. (es)
Downloads
Fracking is being considered around the world as a potential method in the hydrocarbons extraction given the increase of production in USA and Canada during the last years with its implementation. The most criticized feature of the technique of fracking is the contamination of underground waters by fluids connected through the generated and/or pre-existing fractures. This work evaluates the viability of fracking in Colombian territory based in the study of the analogue models, considering the elastic properties of the reservoir rocks using gelatin, sand and clay that apply scaled pressure (lithostatic pressure to scale). The gelatin is used to simulate the reservoir zone, the clay will simulate one sail and the sand will simulate reservoir rocks of underground water. As a result seven different models were generated. There were simulated as 1) the anisotropy presence, 2) the rock sail presence, and 3) the injection groove of fluids in the pipeline. The completed models show that the required distance between the unconventional reservoir and underground waters to avoid contamination by fluids is ~200 m, also between the hydraulic fracturing point and the faults that connect with the shallows area is ~350 m, and it is suggested to study in detail the permeability of both: nearby faults and the rock sail. Two Colombian basins (Magdalena Midland Valley and Llanos) were taken as the main base to analyze the assessment of fracking according to the previously mentioned results, concluding that it is viable particularly in areas like Llanos Basin and with some precautions in similar zones to Magdalena Midland Valley Basin.
La técnica del fracking a nivel mundial está siendo considerada como un método efectivo en la extracción de hidrocarburos teniendo en cuenta que paises como Estados unidos y Canada incrementaron la producción de hidrocarburos al implementar esta técnica. La principal crítica a la técnica del fracking es la contaminación de acuíferos por fluidos conectados a través de las fracturas generadas y/o pre existentes. En el presente trabajo se evalúa la viabilidad del fracking en el territorio colombiano con base en el estudio de modelos análogos, considerando las propiedades elásticas de la roca usando gelatina, arena y arcilla, simulando presiones o cargas escaladas (litostática, a escala). La gelatina es utilizada para simular la zona del reservorio, la arcilla para simular sellos y la arena para simular zonas de acuíferos. En total se generaron 7 modelos diferentes, donde se simuló 1) la presencia de anisotropías pre existentes, 2) la presencia de roca sello y 3) ranuras de inyección de fluido en la tubería. Los modelos realizados muestran que la distancia requerida entre el reservorio no convencional y los acuíferos para evitar la contaminación por fluidos es de ~200 m, entre el punto de fracturamiento hidráulico y las fallas que conectan de una manera u otra con la superficie es de ~350 m, y se sugiere estudiar de manera detallada la permeabilidad tanto de las fallas cercanas como de la roca sello. Dos cuencas colombianas (Valle Medio del Magdalena y Llanos) se tomaron como base para analizar la viabilidad de la técnica del fracking según los resultados mencionados anteriormente, concluyendo que es viable especialmente en áreas como las de los Llanos y tomando algunas precauciones en zonas similares a las del Valle Medio del Magdalena.
References
ANH, (2014a). Acuerdo Número 03 de 2014. República de Colombia.
ANH, (2014b). Resultados de la gestión hidrocarburifera en el país, yacimientos no convencionales.
ANH, (2013). Producción Fiscalizada De Petróleo Por Campo En Superficie (Barriles Promedio Por Día Calendario - Bpdc)
Aydin, A., (2000). Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology, 17, 797-814.
BP, (2016). BP Statistical Review of World Energy. BP Statistical Review, June.
Bonini, M., (2007). Deformation patterns and structural vergence in brittle-ductile thrust wedges: An additional analogue modelling perspective. Journal of Structural Geology, 29, 141-158.
Di Giuseppe, E., Funiciello, F., Corbi, F., Ranalli, G. & Mojoli, G., (2009). Gelatins as rock analogs: a systematic study of their rheological and physical properties. Tectonophysics, 473, 391-403.
Dooley, T. P. & Schreurs, G., (2012). Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics, 574-575, 1-71.
EPA, (2016). Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States, Office of Research and Development, Washington, DC.
Fossen, H., (2010). Structural Geology, 1 Ed. Cambridge University press, New York.
Fossen, H., (2016). Structural Geology, 2 Ed. Cambridge University press, New York.
Goodman, P., Galatioto, F., Thorpe, N., Namdeo, A., Davies, R. & Bird, R., (2012). Investigating the traffic-related environmental impacts of hydraulic-fracturing (fracking) operations. Environment International, 89-90, 248-260
Gómez-Alba, S., Fajardo-Zarate, C. E. & Vargas, C. A., (2015). Stress field estimation based on focal mechanisms and back projected imaging in the eastern Llanos basin (Colombia). Journal of South American Earth Sciences.
Hubbert, M. K. & Willis, D. G., (1957). Mechanics of Hydraulic Fracturing. Society of Petroleum Engineers, 210, 153-168.
IEA, (2012). Golden Rules for a Golden Age of Gas. World Energy Outlook, Special Report on Unconventional Gas.
Jackson, R.B., Vengosh, A., Carey, W., Davies, R.J., Darrah, T.H., O'Sullivan, F. & Petron, G., (2014). The environment costs and benefits of fracking. Annual Review of Environment and Resources, 39, 327–362.
King, G., (2012). World Energy Outlook Special Report on Unconventional Gas. SPE, 152596, SPE Hydraulic Fracturing Technology Conference, the Woodland, Texas, USA, February, 1-80.
Mayer, A., (2016). Risk and benefits in a fracking boom: Evidence from Colorado. The Extractive Industries and Society, 3, 744-753.
Meng, Q., (2016). The impacts of fracking on the environment: A total environmental study paradigm. Science of the Total Environment.
Moretti, I., (1988). The role of faults in hydrocarbon migration. Petroleum Geoscience, 4, 81-94.
Moretti, I., Rodriguez, G., Mayorga M., M. & Mondragon, JC., (2010). Integrated exploration workflow in the south Middle Magdalena Valley (Colombia), Journal of South American Earth Sciences, 29, 187-197.
Moretti, I., Moras, C., Zamora, W., Velandia, M., Mayorga, M. & Rodriguez, G., (2009). Petroleum system variations in the Llanos Basin (Colombia). Journal of petroleum Geology, 27 (4), 321-333.
Nikkilä, K., Korja, A., Hoyi, H. & Eklund, O., (2015). Analog modelling of one-way spreading of hot orogens- a case study from the Svecofennian orogen, Fennoscandian shield. Precambrian research, 268, 135-152.
Osborn, S.G., Vengosh, A., Warner, N.R. & Jackson, R.B., (2011). Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences, USA, 108 (20), 8172.
Otterloo, J. & Cruden, A. R., (2016). Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications. Tectonophysics, 683, 86-97.
Pollar, D. D. & Fletcher, R. C., (2010). Fundamentals of structural geology. Cambridge University Press, New York, USA, 144-151pp.
Rosas, F. M., Duarte, J. C., Schellart, W. P., Tomas, R., Grigorova, V. & Terrinha, P., (2015). Analogue modelling of different angle thrust-wrench fault interference in a brittle medium. Journal of Structural Geology.
Scotchman, I. C., (2016). Shale gas and fracking: exploration for unconventional hydrocarbons. Proceedings of the Geologist’s Association.
SPE, (2016). Fracturing fluids and additives, https://goo.gl/mu0jZM (last accessed June 2017).
Spickert, A., (2014). Petroleum System Analysis: Middle Magdalena Valley Basin, Colombia, South America. Master Thesis, University of Washington, Washington, USA.
Tissot, Bernard P. y Welte, Dietrich H., (1984). Petroleum Formation and Occurrence, 2 ed. Springer-Verlag Berlin Heidelberg, Germany, 451pp.
Twiss, R. J. & Moores, E. M., (2006). Structural Geology. Cambridge University Press, New York, USA, 546pp.
Vayssaire, A., Abdallah, H., Hermoza, W., & Figari N., E., (2014). Regional study and petroleum system modelling of the Eastern Llanos Basin. Search and discovery, AAPG international conference and exhibition, Cartagena, Colombia, Jenuary.
Wu, Z., Yin, H., Wang, X., Zhao, B., Zheng, J., Wang, X. & Wang, W., (2015). The structural styles and formation mechanism of salt structures in the Southern Precaspian Basin: insights from seismic data and analog modeling. Marine and Petroleum Geology.
Yagupsky, D., (2009). Metodología para el estudio de sistemas compresivos y de sus controles estructurales. PhD. Thesis, Faculty of exacts science and nature, Universidad de Buenos Aires, Buenos Aires, Argentina.
Yew, C. H. & Weng, X., (2015). Mechanics of hydraulic fracturing. Second edition, Elsevier, gulf professional publishing, 105-131pp.
Yoxtheimer, D., (2014). Shale Energy Fluids Management Practices. Forum on hydraulic fracturing, Agencia Nacional de Hidrocarburos, Bogotá, Colombia.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Andreas Michael. (2024). Transparent gelatin as a reservoir analogue: Dimensional scaling for hydraulic fracturing laboratory experiments. International Journal of Rock Mechanics and Mining Sciences, 177, p.105732. https://doi.org/10.1016/j.ijrmms.2024.105732.
2. Reinel Andres Echavez, Hernan Dario Villamil, Jose Carlos Cardenas, Edgar Ricardo Perez. (2023). Regional Evaluation of the Natural Radionuclides Behavior at the Middle Magdalena Valley Basin (Colombia). Day 1 Mon, March 20, 2023. https://doi.org/10.2118/212399-MS.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.