Published

2019-04-01

Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques

Estimación rápida del azimut de llegada de un terremoto utilizando registros de una sola estación sismológica y técnicas de aprendizaje de máquinas

DOI:

https://doi.org/10.15446/esrj.v23n2.70581

Keywords:

Earthquake early warning, rapid response, earthquake arrival azimuth, seismic event, Bogota – Colombia, support vector machine (SVM), seismology, earthquakes (en)
Alerta temprana de terremoto, respuesta rápida, azimuth de llegada, evento sísmico, Bogotá - Colombia, máquina de soporte vectorial (MSV), sismología, terremotos. (es)

Downloads

Authors

  • Luis Hernán Ochoa Gutierrez Universidad Nacional de Colombia
  • Carlos Alberto Vargas Jiménez Universidad Nacional de Colombia
  • Luis Fernando Niño Vásquez Universidad Nacional de Colombia

The objective of this research is to apply a new approach to estimate arrival azimuth of seismic events using seismological records of the “El Rosal” station, near to the city of Bogota – Colombia, by applying support vector machines (SVMs). The algorithm was trained with time signal descriptors of 863 seismic events acquired from January 1998 to October 2008; considering only events with magnitude ≥ 2 ML.  The earthquake signals were filtered in order to remove diverse kind of low and high frequency noise not related to such events. During training stages of SVMs, several combinations of kernel function exponent and complexity factor were applied to time signals of 5, 10 and 15 seconds along with earthquake magnitudes of 2.0, 2.5, 3.0 and 3.5 ML. The best classification of SVMs was obtained using time signals of 5 seconds and earthquake magnitudes greater than 3.0 ML with kernel exponent of 10 and complexity factor of 2, showing accuracy of 45.4 degrees. This research is an improvement of previous works related to earthquake arrival azimuth determination from data of one single seismic station employing machine learning techniques. 

El propósito de esta investigación es aplicar un nuevo enfoque para estimar el azimut de llegada de eventos sísmicos utilizando registros sismológicos de la estación El Rosal, cercana a la ciudad de Bogotá – Colombia, mediante la aplicación de máquinas de vectores de soporte (MVS). El algoritmo fue entrenado con descriptores de señales de tiempo de 863 eventos sísmicos adquiridos desde Enero 1998 hasta Octubre de 2008; considerando solamente eventos con magnitudes ≥ 2 ML. Las señales de los terremotos fueron filtradas para remover diversos tipos de ruidos de alta y baja frecuencia no relacionados con dichos eventos. Durante las etapas de entrenamiento de la MVS fueron aplicadas varias combinaciones del exponente de la función kernel y factor de complejidad, a señales de tiempo de 5, 10 y 15 segundos junto con terremotos de magnitudes mayores a 2.0, 2.5, 3.0 y 3.5 ML. La mejor clasificación de la MVS fue obtenida utilizando señales de tiempo de 5 segundos y terremotos de magnitud mayor a 3.0 ML con exponente kernel de 10 y factor de complejidad de 2, mostrando precisión de 45.4 grados. Esta investigación es una mejora a trabajos previos relacionados con determinación del azimut de llegada de un terremoto a partir de datos de una única estación sismológica empleando técnicas de aprendizaje de máquinas.

References

Anant, K. S. & Dowla, F. U. (1997). Wavelet transform methods for phase identification in three-component seismograms. Bulletin of the Seismological Society of America, 87(6), 1598-1612. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.871.8399&rep=rep1&type=pdf

Bermúdez, M. L. & Rengifo, F. (2002). EL ROSAL: La Estación Sismológica del CTBTO en Colombia. Bogota, Primer Simposio Colombiano de Sismología, p. 8.

Eisermann, A. S., Ziv, A. & Wust-Bloch, G. H. (2015). Real-Time Back Azimuth for Earthquake Early Warning. Bulletin of the Seismological Society of America, 105(4), 2274-2285. https://doi.org/10.1785/0120140298

Espinosa, J. M. (1995). Mexico City seismic alert system. Seismological Research Letters, 66(6), 42-53. https://doi.org/10.1785/gssrl.66.6.42

Frank, E., Hall, M. & Witten, I. (2016). The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques". Morgan Kaufmann, Fourth Edition, pp. 218-223.

Horiuchi, S. (2005). An automatic processing system for broadcasting earthquake alarms. Bulletin of the Seismological Society of America, 95(2), 708–718. https://doi.org/10.1785/0120030133

Leal, J., Ochoa, L. & García, J. (2016). Identification of natural fractures using resistive image logs, fractal dimension and support vector machines. Ingeniería e Investigación, 36(3), 125-132. https://doi.org/10.15446/ing.investig.v36n3.56198

Leal, J., Ochoa, L. & Contreras, C. (2018). Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging. Earth Science Research Journal, 22(1), 7-12. https://doi.org/10.15446/esrj.v22n2.68320

Lockman, A. B. & Allen, R. M. (2005). Single-Station Earthquake Characterization for Early Warning. Bulletin of the Seismological Society of America, 95(6), 2029-2039. https://doi.org/10.1785/0120040241

Magotra, N., Ahmed, N. & Chael, E. (1987). Seismic event detection and source location using single station (three components) data. Bulletin of the Seismological Society of America, 77(3), 958-971.

Magotra, N., Ahmed, N. & Chael, E. (1989). Single-station seismic event detection and location. IEEE Transactions on Geoscience and Remote Sensing, 27(1), 15-23. DOI: 10.1109/36.20270

Noda, S. (2012). Improvement of back-azimuth estimation in real-time by using a single station record. Earth, Planets and Space, 64(3), 305-308. https://link.springer.com/article/10.5047/eps.2011.10.005

Ochoa, L. H., Niño, L. F. & Vargas, C. A. (2014). Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station. Earth Sciences Research Journal, 18(2), 115-122. https://doi.org/10.15446/esrj.v18n2.41083

Ochoa, L. H., Niño, L. F. & Vargas, C. A. (2017). Fast magnitude determination using a single seismological station record implementing machine learning techniques. Sciences Direct, Geodesy and Geodynamic, 1-8. https://doi.org/10.1016/j.geog.2017.03.010

Ochoa, L. H., Niño, L. F. & Vargas, C. A. (2018). Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques. DYNA, 85(204), 161-168. https://doi.org/10.15446/dyna.v85n204.68408

Odaka, T. (2003). A new method for quickly estimating epicentral distance and magnitude from a single seismic record. Bulletin of the Seismological Society of America, 93(1), 526-532. DOI: 10.1785/0120020008

Ojeda, A., Martinez, S., Bermudez, M. & Atakan, K. (2002). The new accelerograph network for Santa Fe De Bogota, Colombia. Soil Dynamics and Earthquake engineering, 22(9-12), 791–797. https://doi.org/10.1016/S0267-7261(02)00100-8

Saita, J. & Nakamura, Y. (2003). The early warning systems for mitigation of disasters caused by earthquakes and tsunamis. In: J. Zschau & A. Kuppers (eds). Early Warning Systems for Natural Disaster Reduction. Berlin: Springer-Verlag, pp. 453-460. https://doi.org/10.1007/978-3-642-55903-7_58

Reymond, D., Hyvernaud, O. & Talandier, J. (1991). Automatic detection, location and quantification of earthquakes. Pure and Applied Geophysics, 135(3), pp. 361-382. https://doi.org/10.1007/BF00879470

Roberts, R. G., Christoffersson, A. & Cassidy, F. (1989). Real-time detection, phase identification and source location estimation using single station three component seismic data. Geophysical Journal, 97(3), 471-480. https://doi.org/10.1111/j.1365-246X.1989.tb00517.x

Talandier, J., Reymond, D. & Oka, E. A. (1987). Use of variable mantle magnitude for the rapid one-station estimation of teleseismic moments. Geophysical Research Letters, 14(8), 840-843. https://doi.org/10.1029/GL014i008p00840

Wu, Y. M. & Zhao, L. (2006). Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophysics Research Letter, 33(16), L16312. https://doi.org/10.1029/2006GL026871

Wu, Y. M. & Kanamori, H. (2005). Rapid assessment of damage potential of earthquakes in Taiwan from beginning of P waves. Bulletin of the Seismological Society of America, 93(1), 526-532. https://doi.org/10.1785/0120040193

Wu, Y. M., Shin, T. C. & Tsai, Y. B. (1998). Quick and reliable determination of magnitude for seismic early warning. Bulletin of the Seismological Society of America, 88(5), 1254-1259. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.985&rep=rep1&type=pdf

How to Cite

APA

Ochoa Gutierrez, L. H., Vargas Jiménez, C. A. and Niño Vásquez, L. F. (2019). Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques. Earth Sciences Research Journal, 23(2), 103–109. https://doi.org/10.15446/esrj.v23n2.70581

ACM

[1]
Ochoa Gutierrez, L.H., Vargas Jiménez, C.A. and Niño Vásquez, L.F. 2019. Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques. Earth Sciences Research Journal. 23, 2 (Apr. 2019), 103–109. DOI:https://doi.org/10.15446/esrj.v23n2.70581.

ACS

(1)
Ochoa Gutierrez, L. H.; Vargas Jiménez, C. A.; Niño Vásquez, L. F. Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques. Earth sci. res. j. 2019, 23, 103-109.

ABNT

OCHOA GUTIERREZ, L. H.; VARGAS JIMÉNEZ, C. A.; NIÑO VÁSQUEZ, L. F. Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques. Earth Sciences Research Journal, [S. l.], v. 23, n. 2, p. 103–109, 2019. DOI: 10.15446/esrj.v23n2.70581. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/70581. Acesso em: 19 jul. 2024.

Chicago

Ochoa Gutierrez, Luis Hernán, Carlos Alberto Vargas Jiménez, and Luis Fernando Niño Vásquez. 2019. “Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques”. Earth Sciences Research Journal 23 (2):103-9. https://doi.org/10.15446/esrj.v23n2.70581.

Harvard

Ochoa Gutierrez, L. H., Vargas Jiménez, C. A. and Niño Vásquez, L. F. (2019) “Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques”, Earth Sciences Research Journal, 23(2), pp. 103–109. doi: 10.15446/esrj.v23n2.70581.

IEEE

[1]
L. H. Ochoa Gutierrez, C. A. Vargas Jiménez, and L. F. Niño Vásquez, “Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques”, Earth sci. res. j., vol. 23, no. 2, pp. 103–109, Apr. 2019.

MLA

Ochoa Gutierrez, L. H., C. A. Vargas Jiménez, and L. F. Niño Vásquez. “Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques”. Earth Sciences Research Journal, vol. 23, no. 2, Apr. 2019, pp. 103-9, doi:10.15446/esrj.v23n2.70581.

Turabian

Ochoa Gutierrez, Luis Hernán, Carlos Alberto Vargas Jiménez, and Luis Fernando Niño Vásquez. “Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques”. Earth Sciences Research Journal 23, no. 2 (April 1, 2019): 103–109. Accessed July 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/70581.

Vancouver

1.
Ochoa Gutierrez LH, Vargas Jiménez CA, Niño Vásquez LF. Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques. Earth sci. res. j. [Internet]. 2019 Apr. 1 [cited 2024 Jul. 19];23(2):103-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/70581

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Bahram Choubin, Moslem Borji, Farzaneh Sajedi Hosseini, Amirhosein Mosavi, Adrienn A. Dineva. (2020). Mass wasting susceptibility assessment of snow avalanches using machine learning models. Scientific Reports, 10(1) https://doi.org/10.1038/s41598-020-75476-w.

2. Hisahiko Kubo, Makoto Naoi, Masayuki Kano. (2024). Recent advances in earthquake seismology using machine learning. Earth, Planets and Space, 76(1) https://doi.org/10.1186/s40623-024-01982-0.

3. Michail Nikolaevich Brykov, Ivan Petryshynets, Catalin Iulian Pruncu, Vasily Georgievich Efremenko, Danil Yurievich Pimenov, Khaled Giasin, Serhii Anatolievich Sylenko, Szymon Wojciechowski. (2020). Machine Learning Modelling and Feature Engineering in Seismology Experiment. Sensors, 20(15), p.4228. https://doi.org/10.3390/s20154228.

Dimensions

PlumX

Article abstract page views

785

Downloads

Download data is not yet available.