Published
3D Modeling and Tectonic Interpretation of the Erzincan Basin (Turkey) using Potential Field Data
Modelación 3D e interpretación tectónica en la cuenca Erzincan (Turquía) a través de Información de Campo Potencial
DOI:
https://doi.org/10.15446/esrj.v23n1.71090Keywords:
Erzincan Basin, Gravity data, 3D modeling, Derivative based filters, (en)Cuenca Erzincan, información gravitacional, modelación 3D, derivadas basadas en filtros. (es)
Downloads
Erzincan Basin was investigated using gravity data within the scope of this study. It is also aimed to reveal the discontinuities in the work area as well as the buried discontinuities. Boundary determination filters and analysis of the structure of the data and its connection are revealed and clear information is obtained. Gravity anomalies were applied with an upward continuation method for 0.25, 0.50, 0.75 and 1 km levels. Total Horizontal Derivative (THD) filter, Analytical Signal (AS) filter, Tilt Angle Derivative (Tilt) filter, Total Horizontal Derivative (THDR) filter, Theta Angle Derivative (Cos ɵ) filter, Hyperbolic Tilt Angle Derivative (HTAD) were applied to upward continued data. The discontinuities in the region and the boundaries of the geological structure were revealed. Tilt and Theta Angle derivatives yield the best results from the applied derivative based filters. The obtained data were compared with the existing surface geology and the compatibility between the formations was checked. New discontinuities were found in addition to the discontinuities determined from surface observations in the light of the obtained results. Erzincan Basin was modeled in three dimensions using gravity data of the study area. As a result of modeling, Erzincan Basin has been determined to have an average thickness of 7 km.
Total Horizontal Derivative (THD) filter, Analytical Signal (AS) filter, Tilt Angle Derivative (TAd) filter, Total Horizontal Derivative (THDR) filter, Teta Angle Derivative (Cos ɵ) filter, Hyperbolic Tilt Angle Derivative (HTAD) were applied to upward continued data. The discontinuities in the region and the boundaries of the geological structure were revealed. Tilt and Theta angle derivatives yield the best results from the applied derivative based filters. The obtained data were compared with the existing surface geology and the compatibility between the formations was checked. New discontinuities were found in addition to the discontinuities determined from surface observations in the light of the obtained results. Erzincan basin is modeled in three dimensions using gravity data of the study area. As a result of modeling, Erzincan Basin has been determined to have an average thickness of 7 km.
El objeto de este estudio fue investigar la cuenca Erzincan a través de información gravitacional. También está enfocado en revelar las discontinuidades en el área de estudio asi como las discontinuidades enterradas. Se exponen los filtros de determinación de límites y los análisis de la estructura de la información para obtener información clara. El método de continuación hacia arriba se aplicó en las anomalías gravitacionales en niveles de 0.25, 0.50, 0.75 y 1 km. A la información continuada hacia arriba se le aplicaron los filtros Total Horizontal de Derivadas (THD), Señal Analítica (AS), Ángulo Inclinado de Derivadas (Tilt), Ángulo Theta de Derivadas (Cos ɵ), y Ángulo Inclinado Hiperbólico de Derivadas (HTAD). Este proceso permitió revelar las discontinuidades en la región y los límites de la estructura geológica. Las derivadas de Ángulo Inclinado y Ángulo Theta produjeron los mejores resultados en cuanto a las derivadas aplicadas con base en filtros. La información obtenida se comparó con estudios de superficie geológica y se revisó la compatibilidad entre las formaciones. Se encontraron nuevas discontinuidades adicionales a las discontinuidades determinadas en las observaciones de superficie a la luz de los resultados obtenidos. La cuenca Erzincan se modeló en tres dimensiones con información gravitacional en el área de estudio. Como resultado de la modelación, se determinó que la cuenca Erzincan tiene un promedio de profundidad de 7 kms.
References
Akpınar, Z. (2010). Erzincan Havzasinin tektonik gelişiminin paleomanyetik ve potansiyel alan verileri ile incelenmesi. PhD Thesis, Cumhuriyet University of Sivas 196 p. (In Turkish).
Akpınar, Z., Gürsoy, H., Tatar, O., Büyüksaraç, A., Koçbulut, F. & Piper, J.D.A. (2016). Geophysical analysis of fault geometry and volcanic activity in the Erzincan Basin, Central Turkey: Complex evolution of a mature pull-apart basin. Journal of Asian Earth Sciences, 116, 97-114.
Aktar, M., Dorbath, C. & Arpat, E. (2004). The seismic velocity and fault structure of the Erzincan Basin, Turkey, using local earthquake tomography. Geophysical Journal International, 156, 497–505.
Aktimur, H.T., Sarıaslan, M., Kecer, M., Tursucu, A., Olcer, S., Yurdakul, M.E., Mutlu, G., Aktimur, S. & Yıldırım, T. (1995). Erzincan Dolayının Jeolojisi [Geology of Erzincan Surrounding]. Mineral Research and Exploration Institute (MTA) of Turkey Report no. 9792 [unpublished, in Turkish].
Allen, C. R. (1969). Active Faulting in Northern Turkey, Contribution No. 1577, Div. Geol. Sci., Calif. Inst. Tech., p. 32
Avsar, U., Turkoglu, E., Unsworth, M., Caglar, I. & Kaypak, B. (2013). Geophysical images of the North Anatolian Fault Zone in the Erzincan Basin, Eastern Turkey, and their tectonic implications. Pure and Applied Geophysics, 170 (3), 409-431.
Barao L. M., Trzaskos B., Vesely F.F., de Castro L.G., Ferreira F. J.F., Vasconcellos E. M.G. & Barbosa T.C. (2017). The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil. Journal of South American Earth Sciences, 80, 29-46
Barka, A. & Kadinsky-Cade, K. (1988). Strike-slip faulting geometry in Turkey and its influence on earthquake activity. Tectonics, 7, 663–684.
Barka, A. & Gülen, L. (1989). Complex Evolution of the Erzincan Basin (Eastern Turkey) and its Pull-apart and Continental Escape Origin. Journal of Structural Geology, 11, 275-283.
Barka, A. & Eyidoğan, H. (1993). The Erzincan earthquake of 13 March 1992 in Eastern Turkey. Terra Nova, 5, 190-194.
Berge-Thierry, C., Bernard, P. & Herrero, A. (2001). Simulating strong ground motion with the ‘k-2’ kinematic source model: An application to the seismic hazard in the Erzincan Basin, Turkey. Journal of Seismology, 5, 85-101.
Bayrak, Y., Yılmazturk, A. & Ozturk, S. (2005). Relationship between fundamental seismic hazard parameters for the different source regions in Turkey, Natural Hazards, 36, 445–462.
Bernard, P., Gariel, J.C. & Dorbath, L. (1997). Fault location and rupture kinematics of the magnitude 6.8, 1992 Erzincan earthquake, Turkey, from strong ground motion and regional records. Bulletin of Seismological Society of America, 87, 1230–1243.
Blakely, R.J. (1995). Potential theory in gravity and magnetic applications. Cambridge Press., 441 p.
Buyukasikoglu, S. (1992). Erzincan’ın yeraltı yapısı, yerbilimci gözüyle erzincan depremi, dünü bugünü yarını ve Türkiye Deprem Sorunu. Istanbul Technical University, Istanbul, 15 December, 43–51 (in Turkish).
Cordell, L. & Henderson, R.G. (1968). Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics, 33, 596–601.
Cordell, L.E. & Grauch, V.J.S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: W.J. Hinze, Editor, The Utility of Regional Gravity and Magnetic Anomaly Maps, Society of Exploration Geophysicists, 181-197.
Cooper, G.R.J. & Cowan, D.R. (2006). Enhancing potential field data using filters based on the local phase. Computers & Geosciences. 32(10), 1585-1591.
Ekinci, Y.L. & Yigitbas, E. (2012). A Geophysical Approach to the Igneous Rocks in the Biga Peninsula (NW Turkey) Based on Airborne Magnetic Anomalies: Geological Implications. Geodinamica Acta, 25 (3-4), 267-285.
Ekinci, Y.L., Ertekin, C., & Yiğitbaş, E. (2013). On The Effectiveness of Directional Derivative Based Filters on Gravity Anomalies for Source Edge Approximation: Synthetic Simulations and a Case Study from the Aegean Graben System (Western Anatolia, Turkey). Journal of Geophysics and Engineering, 10 (3), 035005.
Ekinci, Y.L. & Yigitbas, E. (2015). Interpretation of Gravity Anomalies to Delineate Some Structural Features of Biga and Gelibolu peninsulas, and their Surroundings (north-west Turkey). Geodinamica Acta, 27 (4), 300-319.
Emre, O., Duman, T.Y., Kondo, H. Olgun, S., Ozalp, S., Elmacı, H. (2012). 1:1250.000 Scale Active Fault Map Series of Turkey, Erzincan (NJ 37-3) Quadrangle. Serial Number: 44, General Directorate of Mineral Research and Exploration (MTA), Ankara-Turkey.
Erdik, M., Yuzugullu, O., Yılmaz, C. & Akkas, N. (1992). 13 March (Ms = 6.8) Erzincan Earthquake: A preliminary reconnaissance report. Soil Dynamics of Earthquake Engineering, 11, 279–310.
Fuenzalida, H., Dorbath, L., Cisternas, A., Eyidoğan, H., Barka, A., Rivera, L., Haessler, H. & Lyberis, N. (1997). Mechanism of the 1992 Erzincan earthquake and its aftershocks, tectonics of the Erzincan Basin and decoupling on the North Anatolian Fault. Geophysical Journal International, 129, 1–28.
Gaucher, E. (1993). Modele en profondeur et en vitesse du Basin d’Erzincan. DEA Rep. 2, Institut de Physique du Globe de Paris, Jussieu, 215–460.
Gencoglu, S., Inan, E. & Guler, H., 1990. Türkiye’nin Deprem Tehlikesi, TMMOB Jeofizik Mühendisleri Odası, Ankara (In Turkish).
Gökalp, H. (2007), Local earthquake tomography of the Erzincan Basin and surrounding area in Turkey, Annals of Geophysics, 50(6).
Gündogdu, O., Altınok, Y., Hisarlı, M. & Beyaz, H. (1992). 13 Mart 1992 Erzincan depremi gozlem degerlendirmeleri, Erzincan Depremi ve Türkiye Deprem Sorunu, ITU, Maden Fakultesi Yayını, 56–62 (In Turkish).
Gürbüz, A. (2010). Geometric characteristics of pull-apart basins. Lithosphere 2(3), 199–206.
Hartleb, R.D., Dolan, J.F., Kozacı, O., Akyuz, S. & Seitz, G.G. (2006). A 2500-yr- long paleoseismological record of large, infrequent earthquakes on the North Anatolian Fault at Cukurcimen, Turkey. GSA Bulletin, 118(7/8), 823–840.
Hempton, M.R. & Dunne, L.A. (1984). Sedimentation in Pullapart Basins: Active Examples in Eastern Turkey. Journal of Geology, 92, 513–530.
Irrlitz, W. (1972). Lithostratigraphie und tektonische Entwicklung des Neogens in ordostanatolien. Beih. geol. Jb., 120(10), 1-111.
Kaypak, B. & Eyidogan, H. (2002). 3-D models of Vp and Vp/Vs from local earthquake tomography in Erzincan Basin, eastern Turkey. Paper given at the Tectonics of Eastern Turkey and the Northern Arabian Plate. International Workshop, 23-25 Sept. 2002, Erzurum, Turkey.
Kaypak, B. & Eyidoğan, H. (2005). One-dimensional crustal structure of the Erzincan Basin, eastern Turkey and relocations of the 1992 Erzincan earthquake (Ms = 6.8) aftershock sequence. Physical Earth Planetary Science, 151, 1- 20.
Kaypak, B. (2008). Three-dimensional Vp and Vp/Vs structure of the upper crust in the Erzincan Basin (eastern Turkey). Journal of Geophysical Research, 113, B07307.
Kocyigit, A., Yılmaz, A., Adamia, S. & Kuloshvili, S. (2001). Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14, 177–195.
Kocyigit, A. (2003). Two stage Evolutionary Model for the Erzincan pull-apart Basin on the North Anatolian Fault System (NAFS), Turkey. International Workshop on the North Anatolian, East Anatolian and Deadsea Fault Systems: Recent Progress in Tectonics and Paleoseismology 31 August to 12 September, METU-Ankara, 184 (Abstract).
Miller, H.G. & Singh, V. (1994). Potential field tilt__a new concept for location of potential filed sources. Journal of Applied Geophysics, 32, 213-217.
Nabighian, M.N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and used for automated anomaly interpretation. Geophysics, 37, 507-517.
Okay, A.I. & Şahinturk, O. (1997). Geology of the Eastern Pontides, in A.G. Robinson, ed., Regional and Petroleum Geology of the Black Sea and Surrounding Region. AAPG Memoir, 68, 291–311.
Pınar, A., Honkura, Y. & Kikuchi, M. (1994). Rupture process of the 1992 Erzincan earthquake and its implication for seismotectonics in eastern Turkey. Geophysical Research Letters, 21, 1971–1974.
Rice, S.P., Robertson, A. H. F., Ustaomer, T., Inan, N. & Taslı, K. (2009). Late Cretaceous –Early Eocene tectonic development of the Tethyan suture zone in the Erzincan area, Eastern Pontides, Turkey. Geological Magazine, 146 (4), 567–590.
Roest, W.R., Verhoef, J. & Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125.
Tarhan, N. (2002). Türkiye Jeoloji Haritası (1:500000 ölçekli Erzurum Paftası), MTA Genel Müdürlüğü, Ankara (In Turkish).
Toksöz, M.N., Shakal, A.F. and Michael, A. J., 1979. Space-time migration of earthquakes along the North Anatolian Fault Zone and seismic gaps, Pageoph 117, 1258–1270.
Tüysüz, O. (1993). Erzincan çevresinin jeolojisi ve tektonik evrimi. In: 2nd National Earthquake Engineering Conference, Union of Chambers of Turkish Engineers and Architects Chambers of Civil Engineers, Earthquake Engineering, Turkey National Committee, Istanbul Technical University, Structural and Earthquake Research Center, 271–280 (in Turkish).
Verduzco, B., Fairhead, J.D., Green, C.M. & MacKenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116-119.
Westaway, R.W.C. & Arger, J. (2001). Kinematics of the Malatya-Ovacik fault zone. Geodinamica Acta, 14, 103–131.
Wijns, C., Perez, C. & Kowalczyk, P. (2005). Theta map: edge detection in agnetic data. Geophysics, 70(4), L39-L43.
Yılmaz, A. (1985). Yukarı Kelkit Çayı ile Munzur Dağları arasının temel jeoloji özellikleri ve yapısal evrimi. T.J.K. Bulteni, 28(2), 79/92 (In Turkish).
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Fahriye Akar, Nihan Hoskan. (2024). Analysis of the recent regional stress field of Erzincan Basin (Türkiye) and its surroundings using small to moderate earthquakes. Acta Geophysica, https://doi.org/10.1007/s11600-024-01509-x.
2. Onofre Das Flores, Alanna C. Dutra, Mário Lucas, Isac Abdulgani, Caisse Amisse. (2023). Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling. Earth Sciences Research Journal, 27(3), p.227. https://doi.org/10.15446/esrj.v27n3.101149.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.