Published

2019-01-01

Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index

Determinación de la distancia requerida para asegurar el rebaje y las galerías en muros de la zona de no interacción en minería subterránea con base en el Índice de Resistencia Geológica

DOI:

https://doi.org/10.15446/esrj.v23n1.71879

Keywords:

Footwall drift, numerical analysis, underground stability (en)
galería en muro, análisis numérico, estabilidad subterránea (es)

Downloads

Authors

  • Mehmet Volkan Ozdogan Dokuz Eylul University Engineering Faculty Department Of Mining Engineering
  • Alper Gonen Dokuz Eylul University Engineering Faculty Department Of Mining Engineering
In the Bakibaba Copper Mine, the longhole stoping method is used in the production of copper ore. Stability problems have occurred at times on the footwall drift due to the interaction between the footwall drift and stope. In this study, we propose a method for estimating the minimum distance necessary to ensure a non-interaction zone between the footwall drift and stope. We used the finite element method and various distances between the footwall drift and stope and the displacements over drifts as parameters. We also performed analyses on various geological strength index values from low to high to determine the effect of the rock mass on the interaction between the footwall drift and stope

En la mina de cobre de Bakibaba se utiliza el método de minería por perforación de barrenos largos para extraer el mineral. Los problemas de estabilidad han ocurrido generalmente en las galerías en muro debido a la interacción entre la galería y el rebaje. En este estudio se propone un método para la estimación de la distancia mínima necesaria para asegurar la zona de no interacción entre la galería en muro y el rebaje. Se utilizó como parámetro el método del elemento finito y varias distancias entre la galería en muro y el rebaje y los desplazamientos sobre las galerías.  También se realizaron análisis con varios índices de resistencia geológica de abajo hacia arriba para determinar el efecto de la masa rocoa en la interacción entre la galería en muro y el rebaje.

References

Abdellaha, W., Mitria, H., & Thibodeau, D. (2011). Assessment of Mine Haulage Drift Safety Using Probabilistic Methods of Analysis. Procedia Engineering, 26, 2099–2111. DOI: https://doi.org/10.1016/j.proeng.2011.11.2412

Addenbrooke, T. I., & Potts, D. M. (2001). Twin tunnel interaction: surface and subsurface effects. International Journal of Geomechanics, 1(2), 249–271

Chakeri, H., Hasanpour, R., Hindistan, M. A., & Unver, B. (2011). Analysis of interaction between tunnels in soft ground by 3D numerical modeling. Bulletin of Engineering Geology and the Environment, 70, 439–448. DOI: http://dx.doi.org/10.1007/s10064-010-0333-8

Gercek, H. (2005). Interaction between Parallel Underground Openings. The 19th International Mining Congress and Fair of Turkey, IMCET

Ghaboussi, J. & Ranken R. E. (1977). Interaction between Two Parallel Tunnels. International Journal for Numerical and Analytical Methods in Geomechanics, 1(1), 75-103. DOI: https://doi.org/10.1002/nag.1610010107

Hoek, E., Carranza-Torres, C. & Corkum, B. (2002). Hoek-Brown Failure Criterion- 2002 Edition. Proceedings NARMAS-TAC Conference, Toronto, 1,267-273

Jing, L., & Hudson, J. A. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining, 39, 409–427.

Kabwe, E., & Bowa, V. M. (2016). Determination of the Appropriate Geometry of Footwall Drifts Using Numerical Analysis Technique. Geotechnical and Geological Engineering, 34, 1955–1969. DOI: https://doi.org/10.1007/s10706-016-0076-9

Karakus, M., Ozsan, A., & Basarir, H. (2007). Finite element analysis for the twin metro tunnel constructed in Ankara Clay-Turkey. Bulletin of Engineering Geology and the Environment, 66, 71–79. DOI: http://dx.doi.org/10.1007/s10064-006-0056-z

Ozdogan, M. V, Yenice, H., Gonen, A., & Karakus, D. (2017). Optimal Support Spacing for Steel Sets: Omerler Underground Coal Mine in Western Turkey. International Journal of Geomechanics, 18(2), 05017003- 1-12. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001069

Purwanto, A., Shimada, H., Sasaoka, T., Wattimena, R. K., & Matsui, K. (2013). Influence of Stope Design on Stability of Hanging Wall Decline in Cibaliung Underground Gold Mine. International Journal of Geosciences, 4, 1-8. DOI: http://dx.doi.org/10.4236/ijg.2013.410A001

Sharma, K. G. (2009). Numerical analysis of underground structures. Indian Geotechnical Journal, 39(1), 1–63

Sheorey P. R. (1994). A theory for in situ stresses in isotropic and transversely isotropic rock. International Journal of Rock Mechanics and Mining Sciences, 31(1), 23-34. DOI: https://doi.org/10.1016/0148-9062(94)92312-4

Wang, B., & Li, S. (2008). A complex variable solution for stress and displacement field around a lined circular tunnel at great depth. International Journal for Numerical and Analytical Methods in Geomechanics, 33, 939-951. DOI: https://doi.org/10.1002/nag.749

Wang, H. N., Zenga, G. S., Utilic, S., Jiangd, M. J., & Wua, L. (2017). Analytical solutions of stresses and displacements for deeply buried twin tunnels in viscoelastic rock. International Journal of Rock Mechanics & Mining Sciences, 93, 13–29. DOI: https://doi.org/10.1016/j.ijrmms.2017.01.002

Wang, J., Milne, D., Wegner, L. & Reeves, M. (2007). Numerical Evaluation of the Effects of Stress and Excavation Surface Geometry on the Zone of Relaxation around Open Stope Hanging Walls. International Journal of Rock Mechanics & Mining Sciences, 44(2), 289-298. DOI: http://dx.doi.org/10.1016/j.ijrmms.2006.07.002

Yamaguchi, I., Yamazaki, I., & Kiritani, K. (1998). Study of ground-tunnel interactions of four shield tunnels driven in close proximity, in relation to design and constructions of parallel shield tunnels. Tunnelling and Underground Space Technology, 13(3):289–304. DOI: https://doi.org/10.1016/S0886-7798(98)00063-7

How to Cite

APA

Ozdogan, M. V. and Gonen, A. (2019). Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index. Earth Sciences Research Journal, 23(1), 17–25. https://doi.org/10.15446/esrj.v23n1.71879

ACM

[1]
Ozdogan, M.V. and Gonen, A. 2019. Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index. Earth Sciences Research Journal. 23, 1 (Jan. 2019), 17–25. DOI:https://doi.org/10.15446/esrj.v23n1.71879.

ACS

(1)
Ozdogan, M. V.; Gonen, A. Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index. Earth sci. res. j. 2019, 23, 17-25.

ABNT

OZDOGAN, M. V.; GONEN, A. Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index. Earth Sciences Research Journal, [S. l.], v. 23, n. 1, p. 17–25, 2019. DOI: 10.15446/esrj.v23n1.71879. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/71879. Acesso em: 19 apr. 2024.

Chicago

Ozdogan, Mehmet Volkan, and Alper Gonen. 2019. “Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index”. Earth Sciences Research Journal 23 (1):17-25. https://doi.org/10.15446/esrj.v23n1.71879.

Harvard

Ozdogan, M. V. and Gonen, A. (2019) “Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index”, Earth Sciences Research Journal, 23(1), pp. 17–25. doi: 10.15446/esrj.v23n1.71879.

IEEE

[1]
M. V. Ozdogan and A. Gonen, “Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index”, Earth sci. res. j., vol. 23, no. 1, pp. 17–25, Jan. 2019.

MLA

Ozdogan, M. V., and A. Gonen. “Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index”. Earth Sciences Research Journal, vol. 23, no. 1, Jan. 2019, pp. 17-25, doi:10.15446/esrj.v23n1.71879.

Turabian

Ozdogan, Mehmet Volkan, and Alper Gonen. “Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index”. Earth Sciences Research Journal 23, no. 1 (January 1, 2019): 17–25. Accessed April 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/71879.

Vancouver

1.
Ozdogan MV, Gonen A. Determination of Distance Required to Ensure Stope and Footwall-drift Non-interaction Zone based on Geological Strength Index. Earth sci. res. j. [Internet]. 2019 Jan. 1 [cited 2024 Apr. 19];23(1):17-25. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/71879

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Omar Ghazdali, Jalal Moustadraf, Tarik Tagma, Bahija Alabjah, Fouad Amraoui. (2021). Study and evaluation of the stability of underground mining method used in shallow-dip vein deposits hosted in poor quality rock. Mining of Mineral Deposits, 15(3), p.31. https://doi.org/10.33271/mining15.03.031.

2. Xuan Wang, Xiang Pu, Bo Wang, Qiong Zhang, Jianing Wang. (2021). Key technologies of nuclear accident consequence assessment system based on OpenGIS. Arabian Journal of Geosciences, 14(13) https://doi.org/10.1007/s12517-021-07518-0.

3. Carlos Saldaña-Paredes, Humberto Pehovaz-Alvarez, Carlos Raymundo. (2021). Advances in Manufacturing, Production Management and Process Control. Lecture Notes in Networks and Systems. 274, p.176. https://doi.org/10.1007/978-3-030-80462-6_22.

Dimensions

PlumX

Article abstract page views

541

Downloads

Download data is not yet available.