Published
A comparison of alternative curve fitting techniques for different earthquake fault parameters of Iranian earthquakes
Comparación de técnicas de ajuste de curvas para diferentes parámetros de fallas en terremotos en Irán
DOI:
https://doi.org/10.15446/esrj.v24n4.72068Keywords:
Iranian earthquakes, L1 norm, L2 norm, Orthogonal Regression, Robust Regression, Correlation coefficient (en)Coeficiente de correlación, terremotos en Irán, norma L1, norma L2, regresión ortogonal, regresión robusta (es)
Downloads
In this study, we tried to estimate the optimum linear equations among the parameters associated with different earthquake fault mechanisms for Iranian earthquakes. For this purpose, we tested different curve fitting methods in order to present the most proper empirical relationships between several seismic parameters for different fault systems. In the present paper, 46 large and destructive Iranian earthquakes whose magnitudes change between 5.8 and 7.8 from 1900 to 2014 were used for the analyses. A comparison was made by using four types of curve fitting techniques. The estimation procedures are considered as (1) L2 or Least Squares Regression, (2) L1 or Least Sum of Absolute Deviations Regression, (3) Robust Regression and, (4) Orthogonal Regression. Confidence intervals were selected as 95% for all types of regression relationships. In the selection of the best probability distribution, we considered the correlation coefficients of the linear regressions as a powerful and conceptually simple method. Correlation coefficients of all relationships change between 0.299 and 0.986 with Orthogonal regression, between 0.168 and 0.792 with L1 regression, between 0.059 and 0.829 with Robust regression. For Iranian earthquakes, the most suitable and reliable empirical relationships between moment magnitude (Mw) and surface wave magnitude (Ms), Mw and surface rupture length (SRL), Mw and maximum displacement (MD), and SRL and MD were obtained by Orthogonal regression since it supplies stronger correlation coefficients than those of the other regression techniques in most estimates. The results show that estimated empirical relationships among the different fault parameters by using the Orthogonal regression method can be accepted as more up-to-date and more appropriate in comparison with the other regression norms. Consequently, these equations were suggested as more reliable in the estimation of the maximum surface displacement, maximum surface rupture length and associated with the maximum credible earthquakes for different areas of Iran. Furthermore, obtained relationships can be statistically significant for the assessment of seismic, tectonic and geologic activities, and they can be used to evaluate the rupture hazard of the Iranian Plateau.
En este estudio, los autores se enfocaron en estimar las ecuaciones lineales óptimas para los parámetros asociados con diferentes mecanismos de fallas de terremotos en Irán. Con este propósito se evaluaron diferentes métodos de ajuste de curvas para presentar la relación empírica más apropiada entre varios parámetros sísmicos para diferentes sistemas de fallas. En el presente artículo se analizaron 46 terremotos ocurridos en Irán y con magnitudes entre 5.8 y 7.8, entre 1900 y el 2014. Se realizó una comparación al usar cuatro tipos de técnicas de ajuste de curvas. La estimación de los procedimientos se consideraron así (1) L2 o Regresión de Mínimos Cuadrados, (2) L1 o Suma de Mínimos en Regresión de Desviaciones Absolutas, (3) Regresión Robusta y (4) Regresión Ortogonal. Se seleccionaron intervalos de confianza del 95 por ciento para todos los tipos de relaciones de regresión. En la selección de la mejor distribución de probabilidades se consideraron los coeficientes de correlación de las regresiones lineales como un método fuerte y conceptualmente simple. Los coeficientes de correlación de todas las relaciones cambian entre 0.299 y 0.986 con regresión ortogonal; entre 0.168 y 0.792, con regresión L1 ; y entre 0.059 y 0.829, con regresión robusta. Para los terremotos en Irán, las relaciones empíricas que más se ajustan y que son más confiables entre la magnitud de momento (Mw) y la magnitud de onda superficial (Ms), entre la magnitud de momento y la longitud de ruptura superficial (SRL), entre la magnitud del momento y el desplazamiento máximo (MD), y entre la longitud de ruptura superficial y el desplazamiento máximo se obtuvieron por la regresión ortogonal, ya que esta provee coeficientes de relación más fuertes que aquellos estimados por medio de otras técnicas de regresión. Los resultados muestran que las relaciones empíricas estimadas entre los diferentes parámetros de falla al usar el método de regresión ortogonal podría ser aceptado como el más actualizado y más apropiado con respecto a otras normas de regresión. Además, estas ecuaciones se sugieren como las más confiables en la estimación del desplazamiento máximo de superficie, de la máxima longitud de ruptura superficial y asociada con la fiabilidad máxima en terremotos para diferentes zonas de Irán. Adicionalmente, las relaciones obtenidas pueden ser estadísticamente significativas para la evaluación de las actividades sísmicas, tectónicas y geológicas, y pueden ser utilizadas para medir el riesgo de ruptura en el altiplano iraní.
References
Abdelkader, G., Ali, L., & Rachida, R. (2010). Robust nonparametric estimation for spatial regression. Journal of Statistical Planning and Inference, 140, 1656-1670.
Acharya, H. K. (1979). Regional variations in the rupture-length magnitude relationships and their dynamical significance. Bulletin of the Seismological Society of America, 69(6), 2063-2084.
Ambraseys, N. N. (1997). The Krasnovodsk (Turkmenistan) earthquake of 8 July 1895. Journal of Earthquake Engineering, 1(2), 293-317.
Ambraseys, N. N., & Jackson, J. A. (1998). Faulting associated with historical and recent earthquakes in the Mediterranean region. Geophysics Journal International, 133, 390-406.
Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. Cambridge University Press, Cambridge.
Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. Second ed., Wiley, New York.
Arthanari, T. S., & Dodge, Y. (1981). Mathematical Programming in Statistics. Wiley, New York.
Berberian, M. (1976). Documented earthquake faults in Iran. Geological Survey of Iran, 39, 143-186.
Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241, 193-224.
Berberian, M. (2014). Earthquakes and coseismic faulting on the Iranian Plateau: A historical, social and physical approach. Elsevier Series Development in Earth Surface Processes, 17, p. 628.
Blattberg, R. C., & Sargent, T. (1971). Regression with non-Gaussian stable disturbances: Some sampling results. Econometrica, 39, 501-510.
Boyer, B. H., McDonald, J. B., & Newey, W. K. (2003). A comparison of partially adaptive and reweighted least squares estimation. Econometric Reviews, 22, 115-134.
Branham, R. L. Jr. (1982). Alternatives to least-squares. Astronomical Journal, 87, 928-937.
Cadzow, J. A. (2002). Minimum and norm approximate solutions to an overdetermined system of linear equations. Digital Signal Processing, 12, 524-560.
Carroll, R. J., & Ruppert, D. (1996). The use and misuse of orthogonal regression estimation in linear errors-in-variables models. The American Statistician, 50, 1-6.
Djamour, Y., Vernant, Ph., Bayer, R., Nankali, H. R., Ritz, J. F., Hinderer, J., Hatam, Y., Luck, B., Moigne, N. L., Sedigh, M., & Khorrami, F. (2010). GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophysical Journal International, 183, 1287-1301.
Durio, A., & Isaia, E. D. (2003). Parametric regression models by minimum L2 criterion. A study on the risks of fire and electric shocks of electronic transformers. Developments in Applied Statistics, 19, 69-83.
Fama, E. F., (1965). Portfolio analysis in a stable Paretian market. Management Science, 11, 404-419.
Field, C. A. (1997). Robust regression and small sample confidence intervals. Journal of Statistical Planning and Inference, 57, 39-48.
Fuller, W. A. (1987). Measurement Error Models. John Wiley and Sons, New York.
Ghassemi, M. R. (2016). Surface ruptures of the Iranian earthquakes 1900-2014: Insights for earthquake fault rupture hazards and empirical relationships. Earth Science Reviews, 156, 1-13.
Giloni, A., & Padberg, M. (2002). Alternative methods of linear regression. Mathematical and Computer Modeling, 35, 361-374.
Giloni, A., Simonoff, J. S., & Sengupta, B. (2006). Robust weighted LAD regression. Computational Statistics and Data Analysis, 50, 3124-3140.
Greene, W. (1997). Econometric Analysis. Third ed. Prentice-Hall, Englewood Cliffs, NJ.
Hartmann, C., Vankeerberghen, P., Smeyers-Verbeke, J., & Massart, D. L. (1997). Robust orthogonal regression for the outlier detection when comparing two series of measurement results. Analytica Chimica Acta, 344, 17-28.
Heo, J. H., Kho, Y. W., Shin, H., Kim, S., & Kim, T. (2008). Regression equations of probability plot correlation coefficient test statistics from several probability distributions. Journal of Hydrology, 355, 1-15
Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73-101.
Huber, P. J. (1981). Robust Statistics. Wiley, New York.
Huber, P. J. (1987). The place of the L1 norm in robust estimation. In: Dodge, Y. (Ed.), Statistical data analysis based on the L1 norm and related methods. North-Holland, Amsterdam, pp. 23-33.
Javidfakhr, B., Bellier, O., Shabanian, E., Siame, L., Léanni, L., Bourlès, D., & Ahmadian, S. (2011). Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): Geodynamic implications for NNE Iran. Journal of Geodynamics, 52, 290-303.
Kendal, M. G., & Stuart, A. (1979). The advanced theory of statistics. 4th edition, vol. 2, Hafner, New York.
Leng, L., Zhang, T., Kleinman, L., & Zhu, W. (2007). Ordinary Least Square Regression, Orthogonal Regression, Geometric Mean Regression and their Applications in Aerosol Science. Journal of Physics, Conference Series, 78 (1), article ID. 012084, 5 pp.
Madansky, A. (1959). The fitting of straight lines when both variables are subject to error. Journal of the American Statistical Association, 54, 173-205.
Mandelbrot, B. (1967). The variation of some other speculative prices. Journal of Business, XL, 393-413.
Maronna, R. (2005). Principal components and orthogonal regression based on robust scales. Technometrics, 47, 264-273.
Masson, F., Chery, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F., & Ghafory-Ashtiani, M. (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophysical Journal International, 160, 217–226.
Mirzaei, N., Gao, M., & Chen, Y. T. (1997). Seismic source regionalization for seismic zoning of 565 Iran: major seismotectonic provinces. Journal Earthquake Prediction Research, 7, 465-495.
Nowroozi, A. A. (1985). Empirical relations between magnitudes and fault parameters for earthquakes in Iran. Bulletin Seismological Society of America, 75, 1327-1338.
Öztürk, S. (2012). An analysis on the application of statistical regression methods for different data set. Gümüşhane University Journal of Science and Technology Institute, 2(2), 55-67.
Öztürk, S. (2014). A new empirical relation between surface wave magnitude and rupture length for Turkey earthquakes. Earth Sciences Research Journal, 18(1), 15-26.
Öztürk, S., Ghassemi, M. R., & Sarı, M. (2017). Empirical relationships between the surface wave magnitude and moment magnitude for the Iranian earthquakes, International Conference on Mathematics and Engineering, 10-12 May, 2017, (ICOME 2017), 127 pp., İstanbul, Turkey.
Renaud, O., & Victoria-Feser, M. P. (2010). A robust coefficient of determination for regression. Journal of Statistical Planning and Inference, 140, 1852-1862.
Rosenberg, B., & Carlson, D. (1977). A simple approximation of the sampling distribution of least absolute residuals regression estimates. Communications in Statistics-Simulu Computa, 136(4), 421-437.
Rousseeuw, R. J., & Leroy, A. M. (1987). Robust Regression and Outlier Detection. Wiley, New York.
Sen, A., & Srivastava, M. (1990). Regression analysis: Theory, methods, and applications. Springer-Verlag, New York.
Shi, M., & Lukas, M. A. (2005). Sensitivity analysis of constrained linear L1 regression: perturbations to response and predictor variables. Computational Statistics and Data Analysis, 48, 779-802.
Sinha, S. K., Field, C. A., & Smith, B. (2003). Robust estimation of nonlinear regression with autoregressive errors. Statistics and Probability Letters, 63, 49-59.
Spiess, M., & Hamerle, A. (2000). A comparison of different methods for the estimation of regression models with correlated binary responses. Computational Statistics and Data Analysis, 33, 439-455.
Stefanski, L. A. (1991). A Note on high-breakdown estimators. Statistics and Probability Letters, 11, 353-358.
Şentürk, D., & Nguyen, D. V. (2006). Estimation in covariate-adjusted regression. Computational Statistics and Data Analysis, 50, 3294-3310.
Weisberg, S. (1985). Applied Linear Regression. Second edition. John Wiley and Sons, New York.
Wells, D., & Coppersmith, J. K. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Sayed S. R. Moustafa, Gad-Elkareem A. Mohamed, Mohamed Metwaly. (2021). Production of a homogeneous seismic catalog based on machine learning for northeast Egypt. Open Geosciences, 13(1), p.1084. https://doi.org/10.1515/geo-2020-0295.
2. Kaan Hakan Coban, Nilgun Sayil. (2023). Magnitude Type Conversion Models for Earthquakes in Turkey and Its Vicinity with Machine Learning Algorithms. Journal of Earthquake Engineering, 27(9), p.2533. https://doi.org/10.1080/13632469.2022.2120114.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.