Published

2019-07-01

Measurement of radon in soils of Lima City - Peru during the period 2016-2017

Medición del radón 222 en suelos de la provincia de Lima - Perú durante el período 2016-2017

DOI:

https://doi.org/10.15446/esrj.v23n3.74108

Keywords:

soil gas radon, emanation, Lima, LR-115 detector, Niño Costero, river floods, alluvial deposits, igneous rocks (en)
radón en gas del suelo, detector LR-115, emanación, Lima, Niño Costero, inundaciones fluviales, depósitos aluviales, rocas ígneas (es)

Downloads

Authors

  • Luís Vilcapoma Lázaro Pontificia Universidad Católica del Perú
  • María Elena López Herrera Pontificia Universidad Católica del Perú
  • Patrizia Pereyra Pontificia Universidad Católica del Perú
  • Daniel Palacios Fernández Pontificia Universidad Católica del Perú
  • Bertin Pérez Pontificia Universidad Católica del Perú
  • Jhonny Rojas Pontificia Universidad Católica del Perú
  • Laszlo Sajo-Bohus Universidad Simón Bolívar
Lima City is situated on alluvial fan deposits of rivers flowing through geological formations that contain different levels of uranium. In this paper, a study is made on the average spatial and temporal behavior of radon gas in soils of Lima City. Radon concentration was determined using the LR-115 type 2 track detector during 36 periods, of 14 days each, in twenty holes distributed in the fifteen districts of Lima City. Radon concentration in soil pores ranged from 0.1 to 64.3 kBq/m3 with an average value of 5.6 kBq/m3. The average radon concentration in soil gas was about two times lower in winter than in the other seasons. High radon values during October/November 2017 were related to the earthquakes perceived in Lima City in that period. The highest radon concentrations were found in areas of alluvial deposits whose parental material has been removed from the Quilmaná and Huarangal volcanics by the Chillón and Huaycoloro Rivers. Soil gas radon concentrations were even higher in areas closer to volcanic and less distant from rivers. During the period of maximum flooding of the Chillón, Rímac and Lurín rivers, due to the natural phenomenon “El Niño Costero”, anomalous high soil radon concentrations were observed in most of the measurement sites located near rivers. These high radon values were associated with ground vibrations caused by rock and debris avalanches in rivers and creeks.
La ciudad de Lima está situada sobre depósitos de abanicos aluviales de ríos que fluyen a través de formaciones geológicas que contienen diferentes niveles de uranio. En este trabajo se realiza un estudio sobre el comportamiento espacial y temporal promedio del gas radón en suelos de la ciudad de Lima. La concentración de radón se determinó utilizando el detector de trazas LR-115 tipo 2 durante 36 períodos, de 14 días cada uno, en veinte hoyos distribuidos en los quince distritos de la Ciudad de Lima. La concentración de radón en los poros del suelo estuvo comprendida entre 0.1 y 64.3 kBq/m3 con un valor promedio de 5.6 kBq/m3. La concentración promedio de radón en el gas del suelo fue aproximadamente dos veces menor en invierno que en las otras estaciones. Los altos valores de radón durante octubre/noviembre de 2017 se relacionaron con los terremotos percibidos en la ciudad de Lima en ese período. Las concentraciones más altas de radón se encontraron en áreas de depósitos aluviales cuyo material parental ha sido removido de los volcánicos Quilmaná y Huarangal por los ríos Chillón y Huaycoloro. Las concentraciones de radón en el gas del suelo fueron incluso mayores en áreas más cercanas a los volcánicos y menos distantes de los ríos. Durante el período de máxima inundación de los ríos Chillón, Rímac y Lurín, debido al fenómeno natural "El Niño Costero", se observaron altas concentraciones anómalas de radón en el suelo en la mayoría de los sitios de medición ubicados cerca de los ríos. Esos altos valores de radón se asociaron con las vibraciones del suelo causadas por avalanchas de rocas y escombros en ríos y quebradas.

References

Åkerblom, G., Andersson, P. & Clevensjö, B. (1984). Soil Gas Radon - A Source for Indoor Radon Daughters. Radiation Protection Dosimetry, 7(1-4), 49-54.

Alonso, H., Rubiano, J.G., Guerra, J. G., Arnedo, M. A., Tejera, A. & Martel, P. (2019). Assessment of radon risk areas in the Eastern Canary Islands using soil radon gas concentration and gas permeability of soils. Science of the Total Environment, 664, 449-460.

Al-Tamimi, M. H. & Abumurad, K. M. (2001). Radon anomalies along faults in north of Jordan. Radiation Measurements, 34, 397-400.

Appleton, J. D. & Miles, J. C. (2010). A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk. Journal of Environmental Radioactivity, 101(10), 799-803.

Bonotto, D. M. & Andrews, J. N. (1999). Transfer of radon and parent nuclides 238U and 234U from soils of the Mendip Hills area, England, to the water phase. Journal of Geochemical Exploration, 66, 255-268.

Cai, Z., Li, B., Hong, C., Li, X., Yuan, J. & Wang, H. (2018). Laboratory Experimental Laws for the Radon Exhalation of Similar Uranium Samples with Low-Frequency Vibrations. Sustainability, 10(8), 2937.

Cai, Z., Li, X., Bo, L., Hong, C., Ming, L. & Qiong, W. (2019). Experimental Study on Influence of Low-Frequency Vibration on Radon Exhalation From Thermal Porous Medium. In: Chang X. (Editor) Proceedings of the 11th International Mine Ventilation Congress. Springer, Singapore, 1036-1047.

Chauhan, R. P., Kumar, A. & Chauhan, N. (2017). Distribution of indoor thoron in dwellings under normal and turbulent flow conditions using CFD simulation technique. Nuclear Technology & Radiation Protection, 32(2), 180-184.

Chira, J., Rios, C., Trelles, G. & Villareal, E. (2018). Estimación del potencial minero metálico del Perú y su contribución económica al Estado, acumulado al 2050. INGEMMET, 90 pp.

Choubey, V. M., Ahmad, I., Kamra, L. & Ramola, R. C. (2010). Radon Variations in Soil and Groundwater of Bhilagana Valley, Garhwal Himalaya, India. Japanese Journal of Health Physics, 45(3), 278-283.

Choubey, V. M., Bartarya, S. & Ramola, R. (2005). Radon variations in an active landslide zone along Pindar River, in Chamoli District, Garhwal Lesser Himalaya, India. Environmental Geology, 47, 745-750.

Choubey, V. M., Bist, K. S., Saini, N. K. & Ramola, R. C. (1999). Relation between soil-gas radon variation and the different lithotectonic units of Garhwal Himalaya, India. Journal of Applied Radiation and Isotopes, 51(5), 587-592.

Cinelli, G., Tositti, L., Capaccioni, B., Brattich, E. & Mostacci, D. (2015). Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environmental Geochemistry and Health, 37, 305-319.

Ciotoli, G., Guerra, M., Lombardi, S. & Vittori, E. (1998). Soil gas survey for tracing seismogenic faults: A case study in the Fucino basin, Central Italy. Journal of Geophysical Research - Solid Earth, 103(B10), 23781-23794.

Cothern, C. R. & Smith, J. E. (1987). Environmental Radon. Environmental Science Research, Vol. 35, Plenum Press, New York, 363 pp.

Duggal, V., Rani, A. & Mehra, R. (2014). Measurement of soil-gas radon in some areas of northern Rajasthan, India. Journal of Earth System Science, 123(6), 1241-1247.

Elío, J., Ortega, M. F., Nisi, B., Mazadiego, L. F., Vaselli, O., Caballero, J., Quindós-Poncela, L. S., Sainz-Fernández, C. & Pous, J. (2015). Evaluation of the applicability of four different radon measurement techniques for monitoring CO2 storage sites. International Journal of Greenhouse Gas Control, 41, 1-10.

Ennemoser, O., Ambach, W., Brunner, P., Schneider, P., Oberaigner, W., Purtschller, R. & Stingl, V. (1993). Unusually high indoor radon concentrations. Atmospheric Environment, 27A(14), 2169-2172.

Fleischer, R. L, Price, P. B. & Walker, R. M. (1975). Nuclear Tracks in Solids: Principles and Applications. Univ. of California Press, Berkeley, 605 pp.

Fleischer, R. L., Giard, W. R. & Turner L. G. (2000). Membrane-based thermal effects in 222Rn dosimetry. Radiation Measurements, 32, 325-328.

Giammanco, S., Imme, G., Mangano, G., Morelli, D. & Neri, M. (2009). Comparison between different methodologies for detecting radon in soil along an active fault: the case of the Pernicana fault system, Mt. Etna (Italy). Applied Radiation and Isotopes, 67, 178-185.

Giammanco, S., Sims, K. W. W. & Neri. M. (2007). Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture. Geochemistry, Geophysics, Geosystems, 8(10), 1644.

Godoya, M., Hadler, J. C., Iunes, P. J., Mestanza, S. N., Oliveira, R. A., Osorio, A. M. & Paulo, S. R. (2002). Effects of environmental conditions on the radon daughters spatial distribution. Radiation Measurements, 35, 213-221.

Gundersen, L. C. S., Schumann, R. R., Otton, J. K., Dubiel, R. F., Owen, D. E. & Dickinson, K. A. (1992). Geology of Radon in the United States. In: Gates, A.E. & Gundersen, L.C.S., (Editors). Geologic Controls on Radon. Geological Society of America, Special Paper 271, 1-16.

Hadler, J. C. & Paulo, S. R. (1994). Indoor radon daughters contamination monitoring: the absolute efficiency of CR-39 taking into account the plate-out effect and environmental conditions. Radiation Protection Dosimetry, 51 283-296.

Hakl, J., Hunyadi, I., Csige, I., Geczy, G., Lenart, L. & Torocsikll, I. (1992). Outline of natural radon occurrences on karstic terrains of Hungary. Radiation Protection Dosimetry, 45(1-4), 183-186.

Hernando, Tavera, H., Agüero, C. & Fernández, E. (2016). Catálogo General de Isosistas para Sismos Peruanos. Dirección de Ciencias de la Tierra Sólida/Unidad de Sismología, Lima, Perú.

Hogg, A. J. (2018). Predicting Huaycos and Lahars: Physical models, mathematics and uncertainty, International Workshop, Strengthening capacity for mitigation of Huaico (flash flood), Impacts in Peru Lima and Arequipa, Peru, October, 25-27.

Huang, C. J., Yin, H. Y., Chen, C. Y., Yeh, C. H. & Wang, C. L. (2007). Ground vibrations produced by rock motions and debris flows. Journal of Geophysical Research - Earth Surface, 112, F02014(1)- F02014(20).

Huxol, S., Brennwald, M. S., Hoehn, E. & Kipfer, R. (2012). On the fate of 220Rn in soil material in dependence of water content: Implications from field and laboratory experiments. Chemical Geology, 298-299, 116-122.

IAEA (2014). The environmental behaviour of radium. Revised Edition. Technical Reports Series No 476, Vienna, Austria, 267 pp.

INGEMMET (1999). Carta Geológica Nacional - 501 Cuadrángulos Geológicos Digitales de la Carta Nacional 1960 - 1999, República del Perú, Sector Energía y Minas, Instituto Geológico Minero Metalúrgico, Lima, Perú.

INRENA (2004). Inventario de Fuentes de Agua Subterránea en el Valle del Río Chillón. República del Perú, Ministerio de Agricultura, Instituto Nacional de Recursos Naturales, Intendencia de Recursos Hídricos, Administración Técnica del Distrito de Riego Chillón-Rímac-Lurín. Lima, Perú.

Kareem, H. A. (2016). Measurement of Radon Concentration and the Effective Dose Rate in the Soil of the City of Karbala, Iraq. Journal of Radiation and Nuclear Applications, 1(1), 17-23.

King, C. Y. & Minissale, A. (1994). Seasonal Variability of Soil-Gas Radon Concentration in Central California. Radiation Measurements, 23(4), 683-692.

Kumar, G., Kumari, P., Kumar, A., Prasher, S. & Kumar, M. (2017). A study of radon and thoron concentration in the soil along the active fault of NW Himalayas in India. Annals of Geophysics, 60(3), S03291- S032912.

Kyser, K., Alexandre, P., Polito, P., Djouka-Fonkwe, M., Lahd Geagea, M. and Uvarova, Y. (2009). Exploration strategies for Uranium deposits, 24th International Applied Geochemistry Symposium, At Fredericton, New Brunswick, Canada, 439-443.

López-Coto, I., Mas, J. L., San Miguel, E. G., Bolivar, J. P. & Sengupta, D. (2009). A comparison between active and passive techniques for measurements of radon emanation factors. Applied Radiation and Isotopes, 67, 849-853.

Matolin, M. & Stráník, Z. (2006). Radioactivity of sedimentary rocks over the Ždánice hydrocarbon field. Geophysical Journal International, 167(3), 1491-1500.

Mehta, V., Singh, S. P., Chauhan, R. P. & Mudahar, G. S. (2014). Measurement of indoor radon, thoron and their progeny levels in dwellings of Ambala District, Haryana, northern India using solid state nuclear track detectors. Romanian Journal of Physics, 59(7-8), 834-845.

Moharram, B. M. (2000). The influence of mechanical vibrations of railway and car traffics on the radon exhalation using track detector technique. In: Aly, H.F. (Editor.). Seventh Conference of Nuclear Sciences and Applications Vol. 2, Egyptian Society of Nuclear Sciences and Applications, Cairo, Egypt, 968-980.

Nazaroff, W. W. (1992). Radon transport from soil to air. Reviews of Geophysics, 30, 137-160.

Nazaroff, W. W., Moed. B. A. & Sextro, R. G. (1988). Soil as a source of indoor radon: generation, migration, and entry. In:

Nazaroff W.W. & Nero J.A.V. (Editors). Radon and its decay products in indoor air. USA, John Wiley & Sons, Inc., New York, 57-112.

Neri, M., Behncke, B., Burton, M., Galli, G., Giammanco, S., Pecora, E., Privitera, E. & Reitano, D. (2006). Continuous soil radon monitoring during the July 2006 Etna eruption. Geophysical Research Letters, 33(24), L24316.

Nikezic, D. & Stevanovic, N. (2007). Behavior of 220Rn progeny in diffusion chamber. Nuclear Instruments and Methods in Physics Research A, 570, 182-186.

Palacios, D., Fusella, E., Avila, Y., Salas, J., Teixeira, D., Fernández, G., Sajó-Bohus, L., Greaves, E., Barros, H., Bolívar, M. & Regalado, J. (2016). Soil gas radon and thoron measurements in some Venezuelan oilfields. Journal of Radioanalytical and Nuclear Chemistry, 307(1), 801-810.

Palacios, O., Caldas, J. & Vela, Ch. (1992). Geología de los Cuadrángulos de Lima, Lurín Chancay y Chosica. INGEMMET-Boletín No. 43 serie A: Carta Geológica Nacional.

Papp, B., Deak, F., Horvath, A., Kiss, A., Rajnai, G. & Szabo, Cs. (2008). A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole. Journal of Environmental Radioactivity, 99, 1731-1735.

Paulo, S. R., Neman, R., Iunes, P. J. & Hadler, J. C. (2001). Simulating radon daughters diffusion through the air and their depletion on material surfaces. Radiation Measurements, 34, 517-519.

Perales, C. F. (1994). Glosario y Tabla de Correlación de las Unidades Estratigráficas del Perú. Lima, Perú, 177 pp.

Pereyra, P., López, M. E. & Vilcapoma, L. (2015). Concentration Measurements of Rn Indoors in Lima-Peru. International Journal of Physics, 3(4), 165-169.

Pereyra, P., López, M. E., Palacios, D., Canchos, V., Guevara, C., Liza, R. & Sajo Bohus, L. (2018). Mediciones de Radón 222 en la ciudad de Lima y Callao utilizando detectores de Huellas Nucleares, XI Congreso Regional de Seguridad Radiológica y Nuclear, Congreso Regional IRPA, La Habana, Cuba, Abril, 1259-1268.

Pérez, N. M., Hernández, P. A. Padron, E., Melian, G., Marrero, R., Padilla, G., Barracks, J. & Mohasco, D. (2007). Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at Tenerife, Canary Islands. Pure and Applied Geophysics, 164, 2431-2448.

Petraki, E., Nikolopoulos, D., Panagiotaras, D., Cantzos, D., Yannakopoulos, P., Nomicos, C. & Stonham, J. (2015). Radon-222: A Potential Short-Term Earthquake Precursor. Journal of Earth Science and Climatic Change, 6, 282(1)-282(11).

Purtschller. F., Pirchl, P., Sieder, G., Stingl, V., Tessadri, T., Brunner, P., Ennemoser, O. & Schneider, P. (1995). Radon emanation from giant landslides of Koefels (Tyrol, Austria) and Langtang Himal (Nepal). Environmental Geology, 26, 32-38.

Rivera, R. (2010). Realidad y Perspectivas de los Minerales Radioactivos en el Perú. INGEMMET. http://www.ingemmet.gob.pe/documents/73138/202784/P11_Expo_Uranio.pdf

Rojas, J., Palacios, D., Pereyra, P., Pérez, B., Sajo-Bohus, L. & López, M.E. (2018). A semi-empirical approach to estimate the parameters determining the LR-115 detector response in radon measurements. Radiation Measurements, 118, 36-42.

Ruckerbauer, F. & Winkler, R. (2001). Radon concentration in soil gas: a comparison of methods. Applied Radiation and Isotopes, 55, 273-280.

Salama, T. A., Seddik1, U., Hegazy, T. M. & Morsy A. A. (2006). Direct determination of bulk etching rate for LR-115-II solid state nuclear track detectors. Pramana - Journal of Physics, 67(3), 529-534.

Sebrier, M. & Macharé, J. (1980). Observaciones Acerca del Cuaternario de la Costa del Perú Central. Bulletin de l’Institut Français d’Etudes Andines, 9(1-2), 5-22.

Seismic Bulletins (2017). National Center for Seismic Monitoring, Geophysical Institute of Peru (GIP), Boletín N° 001-Boletín N° 354.

Semkov, T. M. (1990). Recoil-emanation theory applied to radon release from mineral grain. Geochimica et Cosmochimica Acta, 54, 425-440.

Shweikani, R. & Hushari, M. (2005). The correlations between radon in soil gas and its exhalation and concentration in air in the southern part of Syria. Radiation Measurements, 40, 699-703.

Snihs, J. O. (1992). Swedish Radon Programme. Radiation Protection Dosimetry, 42(3), 177-184.

Sprinkel, D. A. & Solomon, B. J. (1990). Radon hazards in Utah: Utah Geological and Mineral Survey, Circular 81, Utah, United States, 24 pp.

Sultankhodzhayev, A. N., Latipov, S. U., Zakirov, T. Z. & Zigan, F. G. (1980). Dependence of hydrogeoseismal anomalies on the energy and epicentral distance of earthquakes. Doklady Akademii Nauk Uzbekskoj SSR, 5, 57-59.

Sundal, A. V., Valen, V., Soldal, O. & Strand, T. (2008). The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Science of The Total Environment, 389(2-3), 418-428.

Sutherland, D. S. (1994). Radon workshop-geology, environment, techniques. Geoscientist, 4(2), 27-29.

Szabó, K. Z., Jordán, G., Horváth, Á. & Szabó, C. (2013). Dynamics of soil gas radon concentration in a highly permeable soil based on a long-term high temporal resolution observation series. Journal of Environmental Radioactivity, 124, 74-83.

Tommasino, L. (2016). Concealed errors in radon measurements and strategies to eliminate them, 8th Conference on Protection against Radon at Home and at Work, Prague, Czech Republic, September, 25.

Urosevic, V., Nikezic, D. & Vulovic, S. (2008). A theoretical approach to indoor radon and thoron distribution. Journal of Environmental Radioactivity, 99, 1829-1833.

Villacorta, S., Núñez, S., Tatard, L., Pari, W. & Fidel, L. (2015). Peligros geológicos en el área de Lima Metropolitana y la región Callao, INGEMMET. Boletín Serie C: Geodinámica e Ingeniería Geológica, Lima, Perú, 59, 156 pp.

Walia, V., Mahajan, S., Kumar, A., Singh, S., Bajwa, B. S., Dhar, S. & Yang, T. F. (2008). Fault delineation study using soil-gas method in Dharamsala area, NW Himalayas, India. Radiation Measurements, 43, S337-S342.

Wiegand, J. (2001). A guideline for the evaluation of the soil radon potential based on geogenic and anthropogenic parameters. Environmental Geology, 40, 949-963.

Zafrir, H., Barbosa, S. & Malik, U. (2012). Differentiation between the effect of temperature and pressure on radon within the subsurface geological media. Radiation Measurements, 49, 39-56.

Zmazek, B., Zivcic, M., Todorovski, L., Dzeroski, S., Vaupotic, J. & Kobal I. (2005). Radon in soil gas: How to identify anomalies caused by earthquakes, Applied Geochemistry, 20, 1106-1119.

How to Cite

APA

Lázaro, L. V., López Herrera, M. E., Pereyra, P., Fernández, D. P., Pérez, B., Rojas, J. and Sajo-Bohus, L. (2019). Measurement of radon in soils of Lima City - Peru during the period 2016-2017. Earth Sciences Research Journal, 23(3), 171–183. https://doi.org/10.15446/esrj.v23n3.74108

ACM

[1]
Lázaro, L.V., López Herrera, M.E., Pereyra, P., Fernández, D.P., Pérez, B., Rojas, J. and Sajo-Bohus, L. 2019. Measurement of radon in soils of Lima City - Peru during the period 2016-2017. Earth Sciences Research Journal. 23, 3 (Jul. 2019), 171–183. DOI:https://doi.org/10.15446/esrj.v23n3.74108.

ACS

(1)
Lázaro, L. V.; López Herrera, M. E.; Pereyra, P.; Fernández, D. P.; Pérez, B.; Rojas, J.; Sajo-Bohus, L. Measurement of radon in soils of Lima City - Peru during the period 2016-2017. Earth sci. res. j. 2019, 23, 171-183.

ABNT

LÁZARO, L. V.; LÓPEZ HERRERA, M. E.; PEREYRA, P.; FERNÁNDEZ, D. P.; PÉREZ, B.; ROJAS, J.; SAJO-BOHUS, L. Measurement of radon in soils of Lima City - Peru during the period 2016-2017. Earth Sciences Research Journal, [S. l.], v. 23, n. 3, p. 171–183, 2019. DOI: 10.15446/esrj.v23n3.74108. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/74108. Acesso em: 21 jul. 2024.

Chicago

Lázaro, Luís Vilcapoma, María Elena López Herrera, Patrizia Pereyra, Daniel Palacios Fernández, Bertin Pérez, Jhonny Rojas, and Laszlo Sajo-Bohus. 2019. “Measurement of radon in soils of Lima City - Peru during the period 2016-2017”. Earth Sciences Research Journal 23 (3):171-83. https://doi.org/10.15446/esrj.v23n3.74108.

Harvard

Lázaro, L. V., López Herrera, M. E., Pereyra, P., Fernández, D. P., Pérez, B., Rojas, J. and Sajo-Bohus, L. (2019) “Measurement of radon in soils of Lima City - Peru during the period 2016-2017”, Earth Sciences Research Journal, 23(3), pp. 171–183. doi: 10.15446/esrj.v23n3.74108.

IEEE

[1]
L. V. Lázaro, “Measurement of radon in soils of Lima City - Peru during the period 2016-2017”, Earth sci. res. j., vol. 23, no. 3, pp. 171–183, Jul. 2019.

MLA

Lázaro, L. V., M. E. López Herrera, P. Pereyra, D. P. Fernández, B. Pérez, J. Rojas, and L. Sajo-Bohus. “Measurement of radon in soils of Lima City - Peru during the period 2016-2017”. Earth Sciences Research Journal, vol. 23, no. 3, July 2019, pp. 171-83, doi:10.15446/esrj.v23n3.74108.

Turabian

Lázaro, Luís Vilcapoma, María Elena López Herrera, Patrizia Pereyra, Daniel Palacios Fernández, Bertin Pérez, Jhonny Rojas, and Laszlo Sajo-Bohus. “Measurement of radon in soils of Lima City - Peru during the period 2016-2017”. Earth Sciences Research Journal 23, no. 3 (July 1, 2019): 171–183. Accessed July 21, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/74108.

Vancouver

1.
Lázaro LV, López Herrera ME, Pereyra P, Fernández DP, Pérez B, Rojas J, Sajo-Bohus L. Measurement of radon in soils of Lima City - Peru during the period 2016-2017. Earth sci. res. j. [Internet]. 2019 Jul. 1 [cited 2024 Jul. 21];23(3):171-83. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/74108

Download Citation

CrossRef Cited-by

CrossRef citations6

1. Farah Deeba, Syed Hafizur Rahman, Mohammad Zafrul Kabir, Nafisa Tamannaya Dina. (2022). Annual effective dose due to 222Rn and evaluation of 238U, 232Th and 40K contents in soil at the south-eastern coastal area of Bangladesh. Journal of Radioanalytical and Nuclear Chemistry, 331(2), p.817. https://doi.org/10.1007/s10967-021-08169-x.

2. Patrizia Pereyra, Cesar J. Guevara-Pillaca, Rafael Liza, Bertin Pérez, Jhonny Rojas, Luis Vilcapoma L., Susana Gonzales, Laszlo Sajo-Bohus, María Elena López-Herrera, Daniel Palacios Fernández. (2023). Estimation of Indoor 222Rn Concentration in Lima, Peru Using LR-115 Nuclear Track Detectors Exposed in Different Modes. Atmosphere, 14(6), p.952. https://doi.org/10.3390/atmos14060952.

3. Diego Antonio García-Tadeo, Modesto Montoya-Zavaleta, Yumin Tan. (2023). Understanding the Susceptibility of the Tropical Proglacial Environment in Peru Using Optical Imagery and Radon Measurements. Atmosphere, 14(3), p.568. https://doi.org/10.3390/atmos14030568.

4. Lanqin Wang, Shuying Zang, Qiang Chen, Xiangwen Wu. (2021). Analysis of influence factors on aggregate stability and size distribution in mollisoils. Arabian Journal of Geosciences, 14(12) https://doi.org/10.1007/s12517-021-07431-6.

5. M.O. Klymenko, O.M. Klymenko, O.O. Lebed, L.V. Klymenko, I.I. Zaleskiy, O.V. Varzhel. (2022). Characteristics of the territory of the Rivne region according to the value of radon flux density out of the soil. Nuclear Physics and Atomic Energy, 23(2), p.122. https://doi.org/10.15407/jnpae2022.02.122.

6. Ratan Kumar Majumder, Sudeb Chandra Das, Md. Golam Rasul, Mohammad Ibrahim Khalil, Nafisa Tamannaya Dina, Mohammad Zafrul Kabir, Farah Deeba, Mohammad Rajib. (2021). Measurement of radon concentrations and their annual effective doses in soils and rocks of Jaintiapur and its adjacent areas, Sylhet, North-east Bangladesh. Journal of Radioanalytical and Nuclear Chemistry, 329(1), p.265. https://doi.org/10.1007/s10967-021-07771-3.

Dimensions

PlumX

Article abstract page views

1037

Downloads

Download data is not yet available.