Published

2021-04-16

A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study

Análisis mecánico del riesgo de inestabilidad en los apoyos de un frente de trabajo en un filón de carbón espeso con ángulo de inmersión grande: estudio de caso

DOI:

https://doi.org/10.15446/esrj.v25n1.74167

Keywords:

Large dip angle, Thick coal seam, Support instability risk, Mechanical model, Control measures (en)
ángulo grande de inmersión, filón de carbón espeso, riesgo de inestabilidad de apoyo, modelo mecánico, medidas de control (es)

Downloads

Authors

  • Wei Zhang China University of Mining & Technology
  • Weisheng Zhang China University of Mining and Technology
  • Dongsheng Zhang China University of Mining and Technology
  • Dahong Qi China University of Mining & Technology
  • Ziming He China University of Mining & Technology

To ensure safe and high-efficiency mining in the coalface with large dip angle (LDA) and large mining height (LMH), it is important to study the support stability of the coalface under the corresponding conditions. This study is based on the #3up509 coalface of the Gaozhuang Coal Mine (GCM) affiliated with the Zaozhuang Mining Area (ZMA), for which the mechanical characteristics of support in the coalface with LDA and LMH are analyzed. On this basis, the mechanical models for support tilting and sliding in the coalface are developed. Then support stability along the strike of the coalface during the normal mining period (NMP) and special mining period (SMP) is analyzed. The results show that the critical support tilting resistance during the NMP is 52.2 kN, and the critical support sliding resistance is 183.75 kN, and for the SMP, the values are 2679 kN and 4425 kN, respectively. The use of a two-leg shield support, known as ZY6600-25.5/55 (its rated working resistance is 6600 kN), is investigated, which is proved reasonable for the coalface. The influencing factors of support stability along the strike include technical parameters of the support, mining geological conditions of the coalface and specific conditions during mining. Technical measures, such as installing interlock set to fasten support and adjustable lifting jack, increasing the setting load of the support, and optimizing the support displacement method, are taken to increase the overall support stability in the coalface. The initial aim for a safe and high-efficiency mining at the #3up509 coalface has been achieved through the aforementioned measures.

Estudiar la estabilidad del soporte de un frente de explotación carbonífero bajo las condiciones de un ángulo de inmersión grande (LDA) y una explotación minera alta (LMH) es esencial para garantizar la seguridad y la alta eficiencia minera. Este estudio se basa en el frente de trabajo número #3up509 de la Mina de Carbón Gaozhuang (GCM) afiliada al área minera de Zaozhuang. Los autores analizaron las características mecánicas de apoyo en un frente de trabajo que cumple con las condiciones LDA y LMH. Con esta base se desarrollaron los modelos mecánicos que permitan al apoyo deslizarse e inclinarse en el área del frente de trabajo. Luego, se analizó la estabilidad del apoyo en el rumbo del frente de trabajo durante un periodo normal de explotación (NMP) y en un período especial de explotación (SMP). Los resultados muestran que la resistencia crítica de la inclinación del apoyo durante el período NMP es de 52.2 kN, y la resistencia crítica del deslizamiento es de 183.75 kN. Y para el período SMP, los valores son 229,7 kN y 4425 kN. Además, se investigó el uso de un apoyo de escudo con dos pies, conocido como ZY6600-25.5/55 (su capacidad de resistencia está calculada en 6600 kN), que funciona bien en los frentes de trabajo. Finalmente se tomaron algunas medidas técnicas como instalar un enclavamiento para amarrar un apoyo y un gato de elevación, lo que incrementa la capacidad de carga del apoyo y optimiza el método de desplazamiento del apoyo, para mejorar la estabilidad general del apoyo en el frente de trabajo carbonífero. El objetivo inicial de seguridad y alta eficiencia minera para el frente de trabajo carbonífero #3up509 se alcanzó con estas medidas.

References

Dai H. Y., Wang J. Z., Cai M. F., Wu L. X., & Guo Z. Z. (2002). Seam dip angle based mining subsidence model and its application. International Journal of Rock Mechanics & Mining Sciences, 39(1), 115-123.

Deng X. J., Zhang J. X., Huang P., Zhang Q., & Hao X. F. (2015). Analysis of roof movement characteristics of upward slicing mining in extra thick seam. Journal of China Coal Society, 40(5), 994-1000.

Hua X. Z., & Wang J. C. (2008). Analysis and control of hydraulic support stability in fully-mechanized longwall face to the dip with great mining height. Journal of Coal Science & Engineering, 14(3), 399-402.

Huang L. Y., Liu S. D., Wang B., & Zhou F. B. (2017). Quantitative calculation of aquifer water quantity using TEM data. Earth Sciences Research Journal, 21(1), 51-56.

Hosseini A., Najafi M., Shojaatlhosseini S. A., & Rafiee R. (2017). Determination of a suitable extraction equipment in mechanized longwall mining in steeply inclined coal seams using fuzzy analytical hierarchy method (Case study: Hamkar coal mine, Iran). Journal of Mining & Environment, 8(2), 320-333.

Klishin V. I., & Klishin S. V. (2010). Coal extraction from thick flat and steep beds. Journal of Mining Science, 46(2), 149-159.

Klishin S. V., Klishin V. I., & Opruk G. Y. (2013). Modeling coal discharge in mechanized steep and thick coal mining. Journal of Mining Science, 49(6), 932-940.

Kulakov V. N. (1995). Stress state in the face region of a steep coal bed. Journal of Mining Science, 31(3), 161-168.

Kulakov V. N. (1998). Improving shield supports for mining thick steep seams. Journal of Mining Science, 34(6), 529-536..

Kulakov V. N., & Ogorelkov G. F. (1985). Development of mobile support systems in the excavation of thick steep seams. Soviet Mining, 21(2), 173-178..

Li X. M., Wang Z. H., & Zhang J. W. (2017). Stability of roof structure and its control in steeply inclined coal seams. International Journal of Mining Science and Technology, 27(2), 359-364.

Li R., & Leung G. C. K. (2012). Coal consumption and economic growth in China. Energy Policy, 40(1), 438-443.

Li Y. H., & Zhou R. (2018) Analysis of Mechanical Characteristics and Instability Law of Inverse Fault under the Influence of Mining. Earth Sciences Research Journal, 22(2): 139-144.

Lin Z. M., Chen Z. H., Xie J. W., & Xie H. P. (2004). Stability analysis and control measures of powered supports in greater inclined full-mechanized coal seam. Journal of China Coal Society, 29(3), 264-268.

Liu J. Y., Zhang Q., & Fang Y. (2016). Antiskid measures for equipment at large inclined angle coal face. International Journal of Simulation-Systems, Science & Technology, 17(44), 1-5.

Ma L. Q., Cao X. Q., Li Q. Q., Jia J. L., & Fan G. W. (2015). The support stability mechanism in dip direction of fully mechanised working face with big dip angle considering the strike angle. International Journal of Oil, Gas and Coal Technology, 9(1), 61-78.

Miao S. J., Lai X. P., & Cui F. (2011). Top coal flows in an excavation disturbed zone of high section top coal caving of an extremely steep and thick seam. Mining Science and Technology (China), 21(1), 99-105..

Ostayen R. A. J., Beek A., & Ros M. (2004). A parametric study of the hydro-support. Tribology International, 37(8), 617-625.

Rafael R. D., & Javier T. A. 2000. Hypothesis of the multiple subsidence trough related to very steep and vertical coal seams and its prediction through profile functions. Geotech Geol Eng. 18:289-311.

Rakesh K., Kumar S. A., Kumar M. A., & Rajendra S. (2015). Underground mining of thick coal seams. Int J Min Sci Technol. 25:885-896.

Singh A. K., Singh R., Sarkar M., Mandal P. K., & Sharma D. (2002). Inclined slicing of a thick coal seam in ascending order-a case study. CIM Bull. 95:124-128.

Singh R., & Singh T. N. (1999). Investigation into the behaviour of a support system and roof strata during sublevel caving of a thick coal seam. Geotechnical and Geological Engineering, 18(4), 289-311.

Singh G. S. P., & Singh U. K. A. (2009). Numerical modeling approach for assessment of progressive caving of strata and performance of hydraulic powered support in longwall workings. Computers and Geotechnics, 36(7), 1142-1156.

Singh G. S. P., & Singh U. K. (2012). Influence of strata characteristics on face support requirement for roof control in longwall workings-a case study. Mining Technology, 121(1), 11-19..

Tu H. S., Tu S. H., Yuan Y., Wang F. T., & Bai Q. S. (2015). Present situation of fully mechanized mining technology for steeply inclined coal seams in China. Arabian Journal of Geosciences, 8(7), 4485-4494. 8:4485-4494.

Tu S. H., Yong Y., Zhen Y., Ma X. T., & Qi W. (2009). Research situation and prospect of fully mechanized mining technology in thick coal seams in China. Procedia Earth and Planetary Science, 1(1), 35-40.

Tu S. H., Yuan Y., Li N. L., Dou F. J., & Wang F. T. (2008). Hydraulic support stability control of fully mechanized top coal caving face with steep coal seams based on instable critical angle. Journal of Coal Science & Engineering, 14(3), 382-385.

Wang Z. Q., Zhao J. L., Feng R. M., & Wen X. X. (2011). Analysis and optimizations on retreating mining measures of rock burst prevention on steeply dipping thick coal seam in deep exploitation. Procedia Engineering, 26(1), 794-802.

Wang J. H. (2014). Development and prospect on fully mechanized mining in Chinese coal mines. International Journal of Coal Science & Technology, 1(3), 253-260.

Wang J. A., Jiao J. L., Cheng W. D., Yun D. F., Xie J. W., & Shangguan K. F. (2015). Roles of arc segment in controlling the support stability in longwall fully mechanized top coal caving mining face of steeply inclined coal seam. Journal of China Coal Society, 40(10), 2361-2369.

Wu F. F., Liu C. Y., & Li J. W. (2014). Stability analysis of combined hydraulic support in three soft large seam with large dip angle and thick seam. Journal of Mining & Safety Engineering, 31(5), 721-725.

Wu Y. P., Yun D. F., & Zhang M. F. (2000). Study on the elementary problems of full-mechanized coal mining in greater pitching seam. Journal of China Coal Society, 25(5), 465-468.

Wu Y. P., Xie P. S., Ren S. G., & Li R. B. (2008). Three-dimensional strata movement around coal face of steeply dipping seam group. Journal of Coal Science & Engineering, 14(3), 352-355.

Yang K., Lu W., Pan G. R., & Sun L. (2015). Rule and control of rock pressure behavior of rotary fully mechanized mining under complex conditions and large dip angle. Journal of Mining & Safety Engineering, 32(2), 199-205..

Yin G. Z., Xian X. F., Dai G. F., & Zhang D. M. (2001). Basic behaviour of strata movement in seam with deep dip angle. Chinese Journal of Geotechnical Engineering, 23(4), 450-453.

Yun D. F., Liu Z., Cheng W. D., Fan Z. D., Wang D. F., & Zhang Y. H. (2017). Monitoring strata behavior due to multi-slicing top coal caving longwall mining in steeply dipping extra thick coal seam. International Journal of Mining Science and Technology, 27(1), 179-184.

Yuan Y., Tu S. H., Wang F. T., Zhang X. G., & Li B. (2015). Hydraulic support instability mechanism and its control in a fully-mechanized steep coal seam working face with large mining height. Journal of the Southern African Institute of Mining and Metallurgy, 115(5), 441-447.

Zhang B., & Cao S. G. (2015). Study on first caving fracture mechanism of overlying roof rock in steep thick coal seam. International Journal of Mining Science and Technology, 25(1): 133-138.

Zhang J. W., Wang J. C., Wei W. J., Chen Y., & Song Z. Y. (2018). Experimental and numerical investigation on coal drawing from thick steep seam with longwall top coal caving mining. Arabian Journal of Geosciences, 11(5), 1-19.

How to Cite

APA

Zhang, W., Zhang, W., Zhang, D., Qi, D. and He, Z. (2021). A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study. Earth Sciences Research Journal, 25(1), 101–108. https://doi.org/10.15446/esrj.v25n1.74167

ACM

[1]
Zhang, W., Zhang, W., Zhang, D., Qi, D. and He, Z. 2021. A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study. Earth Sciences Research Journal. 25, 1 (Apr. 2021), 101–108. DOI:https://doi.org/10.15446/esrj.v25n1.74167.

ACS

(1)
Zhang, W.; Zhang, W.; Zhang, D.; Qi, D.; He, Z. A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study. Earth sci. res. j. 2021, 25, 101-108.

ABNT

ZHANG, W.; ZHANG, W.; ZHANG, D.; QI, D.; HE, Z. A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study. Earth Sciences Research Journal, [S. l.], v. 25, n. 1, p. 101–108, 2021. DOI: 10.15446/esrj.v25n1.74167. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/74167. Acesso em: 23 aug. 2024.

Chicago

Zhang, Wei, Weisheng Zhang, Dongsheng Zhang, Dahong Qi, and Ziming He. 2021. “A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study”. Earth Sciences Research Journal 25 (1):101-8. https://doi.org/10.15446/esrj.v25n1.74167.

Harvard

Zhang, W., Zhang, W., Zhang, D., Qi, D. and He, Z. (2021) “A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study”, Earth Sciences Research Journal, 25(1), pp. 101–108. doi: 10.15446/esrj.v25n1.74167.

IEEE

[1]
W. Zhang, W. Zhang, D. Zhang, D. Qi, and Z. He, “A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study”, Earth sci. res. j., vol. 25, no. 1, pp. 101–108, Apr. 2021.

MLA

Zhang, W., W. Zhang, D. Zhang, D. Qi, and Z. He. “A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study”. Earth Sciences Research Journal, vol. 25, no. 1, Apr. 2021, pp. 101-8, doi:10.15446/esrj.v25n1.74167.

Turabian

Zhang, Wei, Weisheng Zhang, Dongsheng Zhang, Dahong Qi, and Ziming He. “A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study”. Earth Sciences Research Journal 25, no. 1 (April 16, 2021): 101–108. Accessed August 23, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/74167.

Vancouver

1.
Zhang W, Zhang W, Zhang D, Qi D, He Z. A Mechanical Analysis of Support Instability Risk along the Strike of Coalface in Thick Coal Seam with Large Dip Angle: A Case Study. Earth sci. res. j. [Internet]. 2021 Apr. 16 [cited 2024 Aug. 23];25(1):101-8. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/74167

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Pengyu Li, Zhenqi Hu, Yaokun Fu, Gensheng Li, Jiaxin Guo, Dongzhu Yuan, Punit Gupta. (2022). Normality Test for Influence Function of Mining Surface Subsidence Based on Network Observation Station. Mathematical Problems in Engineering, 2022, p.1. https://doi.org/10.1155/2022/2201996.

2. Kristin D. Chilton, James A. Spotila. (2022). Uncovering the Controls on Fluvial Bedrock Erodibility and Knickpoint Expression: A High‐Resolution Comparison of Bedrock Properties Between Knickpoints and Non‐Knickpoint Reaches. Journal of Geophysical Research: Earth Surface, 127(3) https://doi.org/10.1029/2021JF006511.

Dimensions

PlumX

Article abstract page views

374

Downloads

Download data is not yet available.