Published

2019-07-01

The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area

La tomografía de terremoto local del área geotérmica de Erzurum (Turquía)

DOI:

https://doi.org/10.15446/esrj.v23n3.74921

Keywords:

Local earthquake tomography, seismic velocity model, geothermal, Erzurum (en)
Tomografía sísmica local, modelo de velocidad, geotérmica, Erzurum, (es)

Downloads

Authors

Erzurum and its surroundings are one of the seismically active and hydrothermal areas in the Eastern part of Turkey. This study is the first approach to characterize the crust by seismic features by using the local earthquake tomography method. The earthquake source location and the three dimensional seismic velocity structures are solved simultaneously by an iterative tomographic algorithm, LOTOS-12. Data from a combined permanent network comprising comprises of 59 seismometers which was installed by Ataturk University-Earthquake Research Center and Earthquake Department of the Disaster and Emergency Management Authority  to monitor the seismic activity in the Eastern Anatolia, In this paper, three-dimensional Vp and Vp/Vs characteristics of Erzurum geothermal area were investigated down to 30 km by using 1685 well-located earthquakes with 29.894 arrival times, consisting of 17.298 P- wave and 12.596 S- wave arrivals. We develop new high-resolution depth-cross sections through Erzurum and its surroundings to provide the subsurface geological structure of seismogenic layers and geothermal areas. We applied various size horizontal and vertical checkerboard resolution tests to determine the quality of our inversion process. The basin models are traceable down to 3 km depth, in terms of P-wave velocity models. The higher P-wave velocity areas in surface layers are related to the metamorphic and magmatic compact materials. We report that the low Vp and high Vp/Vs values are observed in Yedisu, Kaynarpinar, Askale, Cimenozu, Kaplica, Ovacik, Yigitler, E part of Icmeler, Koprukoy, Uzunahmet, Budakli, Soylemez, Koprukoy, Gunduzu, Karayazi, Icmesu, E part of Horasan and Kaynak regions indicated geothermal reservoir.
Erzurum y sus alrededores son unas de las áreas más sísmicamente activas en la parte oriental de Turquía, también conocida por su actividad hidrotermal. Este estudio es el primer acercamiento a caracterizar la corteza utilizando la tomografía de terremoto local. La ubicación de la fuente del terremoto y las estructuras de velocidad tridimensional se resolvieron simultáneamente mediante un algoritmo tomográfico iterativo, LOTOS-12. Los datos de redes permanentes que consisten en 59 sismómetros, que fueron instalados por la Universidad y Centro de Investigación de Terremotos Ataturk, y el Departamento de Terremotos de la Autoridad de Manejo de Desastres y Emergencias, se utilizan para monitorear la actividad sísmica en el este de Anatolia. En este artículo, se investigaron las características tridimensionales de Vp y Vp/Vs del área geotérmica de Erzurum hasta 30 km de profundidad utilizando 1685 terremotos bien ubicados con 29,894 tiempos de llegada, que consisten en 17,298 ondas P y 12,596 llegadas de ondas S. Desarrollamos nuevas secciones transversales de profundidad de alta resolución a través de Erzurum y sus alrededores para proporcionar la estructura geológica subsuperficial de las capas sismógenas y las áreas geotérmicas. Aplicamos varias pruebas de resolución de tablero de ajedrez horizontal y vertical para determinar la calidad de nuestro proceso de inversión. Los modelos de cuenca se pueden rastrear hasta 3 km de profundidad, en términos de modelos de velocidad de onda P. Las áreas de mayor velocidad de la onda P en las capas superficiales están relacionadas con los materiales compactos metamórficos y magmáticos. Informamos que los valores de Vp baja y Vp/Vs alta se observaron en Yedisu, Kaynarpinar, Askale, Cimenozu, Kaplica, Ovacik, Yigitler, E parte de Icmeler, Koprukoy, Uzunahmet, Budakli, Soylemez, Koprukoy, Gunduzu, Karayazi, Icmesu y parte de las regiones de Horasan y Kaynak. Como resultado importante, estas regiones indican depósitos geotérmicos.

References

Akbas, B., Akdeniz, N. Aksay, A. Altun, I. Balci, V. Bilginer, E. et al. (2013). Turkey geological map, General Directorate of Mineral Research and Exploration, Ankara-Turkey, http://www.mta.gov.tr (last accessed July 2018).

Balat, M. (2006). Current geothermal energy potential in Turkey and use of geothermal energy, energy sources. Energy Sources, 1(1), 55-65.

Baris, S., Nakajima, J., Hasegawa, A., Honkura, Y., Ito, A., & Ucer, B. (2005). Three-dimensional structure of Vp, Vs and Vp/Vs in the upper crust of the Marmara region, NW Turkey. Earth Planets Space, 75(11), 1019-1038.

Bektas, O., Ravat, D., Buyuksarac, A., Bilim, F. & Ates A. (2007). Regional geothermal characterization of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics, 164, 975-998.

Bayraktutan, M. S., Merefield, J. R., Grainger, P., Evans, B. M., Yilmaz, M. & Kalkan, E. (1996). Regional gas geochemistry in an active tectonic zone, Erzurum basin, eastern Turkey. Quarterly Journal of Engineering Geology, 29(3), 209-218.

Cinar, H. & Alkan, H. (2015). Crustal Structure of Eastern Anatolia from Single-Station Rayleigh Wave Group Velocities. Eastern Anatolian Journal of Science, 1(2), 57-69.

Dinc, A. N., Koulakov, I., Thorwart, M., Rabbel, W., Flueh, E. R., Arroyo, I., Taylor, W. & Alvarado, G. (2010). Local earthquake tomography of central Costa Rica: transition from seamount to ridge subduction. Geophysical Journal International, 183, 286-302.

Emre, O., Koehler, R. D., Hengesh, J. V., Duman, T. Y., Akyuz, S., Altunel, E. & Barka, A. (2004). Late Holocene Activity of Erzurum Fault Zone in Eastern Anatolia, Turkey, Geological Society of America annual meeting, Denver, USA, November, 148.

Emre, O., Duman, T. Y., Ozalp, S., Elmaci, H., Olgun, S. & Saroglu, F. (2013). 1/1.250.000 scaled Turkey active fault map, General Directorate of Mineral Research and Exploration special publication, http://www.mta.gov.tr/ (last accessed June 2018).

Emre, O., Duman, T. Y., Ozalp, S., Saroglu, F., Olgun, S., Elmaci, H. et al. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16, 3229-3275.

Gokalp, H. (2012). Tomographic Imaging of the Seismic Structure beneath the East Anatolian Plateau, Eastern Turkey. Pure and Applied Geophysics, 169, 1749-1776.

Gok, R, Pasyanos, M.E., & Zor, E. (2007). Lithospheric structure of the continent-continent collision zone: eastern Turkey. Geophysical Journal International, 169(3), 1079-1088.

Gulbay, R. K. (2015). Organic geochemical and petrographical characteristics of coal bearing Oligo-Miocene sequence in the Oltu-Narman Basin (Erzurum), NE Turkey. International Journal of Coal Geology, 149(1), 93-107.

Gulec, N. & Hilton, D.R. (2016). Turkish geothermal fields as natural analogues of CO2 storage sites: Gas geochemistry and implications for CO2 trapping mechanisms. Geothermics, 64, 96-110.

Haklidir, T. F. S. (2015). Geothermal Energy Sources and Geothermal Power Plant Technologies in Turkey. In: Bilge, A., Toy, A., Gunay, M. (Editor). Energy Systems and Management Springer Proceedings in Energy, 115-124.

Havskov, J. & Ottemoller, L. (1999). Seisan Earthquake analysis software. Seismological Research Letters, 70(5), 532-534.

Hauksson, E. & Haase, J. S. (1997). Three-dimensional Vp and Vp/Vs velocity models of the Los Angeles basin and central Transverse Ranges, California. Journal of Geophysical Research, 102, 5423-5433.

Hauksson, E. (2000). Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in southern California. Journal of Geophysical Research, 105, 13875-13903.

Italiano, F., Sasmaz, A., Yuce, G. & Okan, O. O. (2013). Thermal fluids along the East Anatolian Fault Zone (EAFZ): Geochemical features and relationships with the tectonic setting. Chemical Geology, 339, 103-114.

Kaya, T. (2012). Geothermal Project Development in Turkey-An Overview with emphasis on drilling. GRC Transactions, 36, 159-164.

Kaygusuz, A., Aslan, Z., Aydincakir, E., Yucel, C., Gucer, M. A., Sen, C. (2018). Geochemical and Sr-Nd-Pb isotope characteristics of the Miocene to Pliocene volcanic rocks from the Kandilli (Erzurum) area, Eastern Anatolia (Turkey): Implications for magma evolution in extension-related origin. Lithos, 296-299, 332-351.

Kaypak, B. & Gokkaya, G. (2012). 3-D imaging of the upper crust beneath the Denizli geothermal region by local earthquake tomography, western Turkey. Journal of Volcanology and Geothermal Research, 211-212, 47-60.

Keskin, M., Pearce, J.A. & Mitchell, J. (1998). Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars Plateau, northeastern Turkey. Journal of Volcanology and Geothermal Research, 85(1-4), 355-404.

Keskin, M., Pearce, J. A., Kempton, P. D., Greenwood, P. (2006). Magma-crust interactions and magma plumbing in a postcollisional setting: Geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey. Geological Society of America Special Paper, 409, 475-505.

Khrepy, S., Koulakov, I. & Arifi, N. (2015). Crustal structure in the area of the Cannon Earthquakes of Abu Dabbab (northern Red Sea, Egypt), from seismic tomography inversion. Bulletin of the Seismological Society of America, 105, 1870-1882.

Kilic, A. D. & Inceoz, M. (2015). Mineralogical, Geochemical and Isotopic Effect of Silica in Ultramaphic Systems, Eastern Anatolian Turkey. Geochemistry International, 53 (4), 369-382.

Kocyigit, A. & Canoglu, M.C. (2017). Neotectonics and Seismicity of Erzurum Pull-Apart Basin, E Turkey. Russian Geology and Geophysics, 58(1), 99-122.

Koulakov, I. & Sobolev, S. (2006). Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data. Geophysical Journal International, 164(1), 218-235.

Koulakov, I., Sobolev, S.V. & Asch, G. (2006). P- and S-velocity images of the lithosphere-asthenosphere system in the Central Andes from local source tomographic inversion. Geophysical Journal International, 167, 106-126.

Koulakov, I., Bohm, M., Asch, G., Luhr, B. G., Manzanares, A., Brotopuspito, K. S. et al. (2007). P and S velocity structure of the crust and the upper mantle beneath central Java from local tomography inversion. Journal of Geophysical Research: Solid Earth, 112 (B8).

Koulakov, I. (2009). LOTOS code for local earthquake tomographic inversion: benchmarks for testing tomographic algorithms. Bulletin of the Seismological Society of America, 99, 194-214.

Koulakov, I., Yudistira, T. & Luehr, B.G. (2009). P, S velocity and Vp/Vs ratio beneath the Toba caldera complex (northern Sumatra) from local earthquake tomography. Geophysical Journal International, 177, 1121-1139.

Koulakov, I., Zaharia, B., Enescu, B., Radulian, M., Popa, M., Parolai, S. & Zschau, J. (2010a). Delamination or slab detachment beneath Vrancea? New arguments from local earthquake tomography. Geochemistry, Geophysics, Geosystems, 11, 1-24.

Koulakov, I., Bindi, D., Parolai, S., Grosser, H. & Milkereit, C. (2010b). Distribution of Seismic Velocities and Attenuation in the Crust beneath the North Anatolian Fault (Turkey) from Local Earthquake Tomography. Bulletin of the Seismological Society of America, 100 (1), 207-224.

Kuznetsov, P. Y. & Koulakov, I. (2014). The three-dimensional structure beneath the Popocatepetl volcano (Mexico) based on local earthquake seismic tomography. Journal of Volcanology and Geothermal Research, 276, 10-21.

Lee, W. H. K. & Lahr, J. C. (1975). HYPO71 (Revised): A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, Open File Report, 75-311, 64.

Maden, N. (2012). One-Dimensional Thermal Modelling of the Eastern Pontides Orogenic Belt (NE Turkey). Pure and Applied Geophysics, 169, 235-248.

Maden, N., Aydin, A. & Kadirov, F. (2015). Determination of the Crustal and Thermal Structure of the Erzurum-Horasan-Pasinler Basins (Eastern Turkey) using Gravity and Magnetic Data. Pure and Applied Geophysics, 172(6), 1599-1614.

Mahesh, P. & Gupta, S. (2016). The role of crystallized magma and crustal fluids in intraplate seismic activity in Talala region (Saurashtra), Western India: An insight from local earthquake tomography. Tectonophysics, 690, 131-141.

Nolet, G. (1981). Linearized Inversion of (Teleseismic) Data. In: Cassinis, R. (Editor). The Solution of the Inverse Problem in Geophysical Interpretation. Ettore Majorana International Science Series No. 11, Boston, 9-37.

Oruc, B., Sertcelik, I., Kafadar, O. & Selim, H. H. (2013). Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics, 88, 105-113.

Ozacar, A. A., Gilbert, H. & Zandt, G. (2008). Upper mantle discontinuity structure beneath East Anatolian Plateau (Turkey) from receiver functions. Earth and Planetary Science Letters, 269(3-4), 426-434.

Ozer, C. & Polat, O. (2017a). Local earthquake tomography of Izmir geothermal area, Aegean region of Turkey. Bollettino di Geofisica Teorica ed Applicata, 58(1), 17-42.

Ozer, C. & Polat, O. (2017b). 3-D crustal velocity structure of Izmir and surroundings. Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 733-747.

Ozer, C., Gok, E. & Polat, O. (2018). Three-Dimensional Seismic Velocity Structure of the Aegean Region of Turkey from Local Earthquake Tomography. Annals of Geophysics, 61 (1), 1-21.

Pamuk, E., Gönenc, O., Ozdag, C. & Akgun, M. (2018). 3D Bedrock Structure of Bornova Plain and Its Surroundings (Izmir/Western Turkey). Pure and Applied Geophysics, 175(1), 325-340.

Paige, C.C. & Saunders, M.A. (1982). LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8, 43-71.

Salah, M. K., Sahin, S. & Aydin, U. (2011). Seismic velocity and Poisson’s ratio tomography of the crust beneath East Anatolia. Journal of Asian Earth Sciences, 40 (3), 746-761.

Sandvol, E., Turkelli, N. & Barazangi, M. (2003). The Eastern Turkey Seismic Experiment: The study of a young continent-continent collision. Geophysical Research Letters, 30(24), 8038.

Skolbeltsyn, G., Mellors, R., Gok, R., Turkelli, N., Yetirmishli, G., & Sandvol, E. (2014). Upper mantle S wave velocity structure of the East Anatolian-Caucasus region. Tectonics, 33(3), 207-221.

Teoman, U. M., Turkelli, N. & Gok, R. (2005). Dogu Anadolu Bolgesi Ust Kabuk Hiz Yapisinin Uc-Boyutlu Yerel Deprem Tomografisi Yontemi ile Belirlenmesi, http://kocaeli2007.kocaeli.edu.tr/kocaeli2005/deprem_sempozyumu_kocaeli_2005/2_yer_yapisi/d_11_kabuk_yapisi_calismalari/dogu_anadolu_bolgesi_ust_kabuk_hiz_yapisinin_uc_boyutlu.pdf (last accessed June 2008).

Totaro, C., Koulakov, I., Orecchio, B. & Presti, D. (2014). Detailed crustal structure in the area of the southern Apennines-Calabrian Arc border from local earthquake tomography. Journal of Geodynamics, 82, 87-97.

Van der Sluis, A. & van der Vorst, H. A. (1987). Numerical solution of large, sparse linear algebraic systems arising from tomographic problems. In: Nolet, G. (Editor). Seismology and Exploration Geophysics, Vol. 5, Dordrecht, 49-83.

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F. & Wobbe, F. (2013). Generic Mapping Tools: Improved version released. EOS, Transactions American Geophysical Union, 94, 409-410.

Yakovlev, A. V., Koulakov, I. & Tychkov, S. A. (2007). Moho depths and three-dimensional velocity structure of the crust and upper mantle beneath the Baikal region from local tomography. Russian Geology and Geophysics, 48, 204-220.

Yarbasi, N. & Kalkan, E. (2009). Geotechnical mapping for alluvial fan deposits controlled by active faults: A case study in the Erzurum, NE Turkey. Environmental Geology, 58(4), 701-714.

Yuce, G. & Taskiran, L. (2013). Isotope and chemical compositions of thermal fluids at Tekman Geothermal Area (Eastern Turkey). Geochemical Journal, 47, 423-435.

Zhao, D., Todo, S. & Lei, J. (2005). Local earthquake reflection tomography of the Landers aftershock area. Earth and Planetary Science Letters, 235, 623-631.

Zor, E., Sandvol, E., Gurbuz, C., Turkelli, N., Seber, D., & Barazangi, M. (2003). The crustal structure of the East Anatolian plateau (Turkey) from receiver functions. Geophysical Research Letters, 30(24).

How to Cite

APA

Ozer, C. and Ozyazicioglu, M. (2019). The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area. Earth Sciences Research Journal, 23(3), 209–223. https://doi.org/10.15446/esrj.v23n3.74921

ACM

[1]
Ozer, C. and Ozyazicioglu, M. 2019. The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area. Earth Sciences Research Journal. 23, 3 (Jul. 2019), 209–223. DOI:https://doi.org/10.15446/esrj.v23n3.74921.

ACS

(1)
Ozer, C.; Ozyazicioglu, M. The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area. Earth sci. res. j. 2019, 23, 209-223.

ABNT

OZER, C.; OZYAZICIOGLU, M. The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area. Earth Sciences Research Journal, [S. l.], v. 23, n. 3, p. 209–223, 2019. DOI: 10.15446/esrj.v23n3.74921. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/74921. Acesso em: 2 nov. 2024.

Chicago

Ozer, Caglar, and Mehmet Ozyazicioglu. 2019. “The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area”. Earth Sciences Research Journal 23 (3):209-23. https://doi.org/10.15446/esrj.v23n3.74921.

Harvard

Ozer, C. and Ozyazicioglu, M. (2019) “The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area”, Earth Sciences Research Journal, 23(3), pp. 209–223. doi: 10.15446/esrj.v23n3.74921.

IEEE

[1]
C. Ozer and M. Ozyazicioglu, “The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area”, Earth sci. res. j., vol. 23, no. 3, pp. 209–223, Jul. 2019.

MLA

Ozer, C., and M. Ozyazicioglu. “The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area”. Earth Sciences Research Journal, vol. 23, no. 3, July 2019, pp. 209-23, doi:10.15446/esrj.v23n3.74921.

Turabian

Ozer, Caglar, and Mehmet Ozyazicioglu. “The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area”. Earth Sciences Research Journal 23, no. 3 (July 1, 2019): 209–223. Accessed November 2, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/74921.

Vancouver

1.
Ozer C, Ozyazicioglu M. The Local Earthquake Tomography of Erzurum (Turkey) Geothermal Area. Earth sci. res. j. [Internet]. 2019 Jul. 1 [cited 2024 Nov. 2];23(3):209-23. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/74921

Download Citation

CrossRef Cited-by

CrossRef citations11

1. Fatih Karsli, Erdem Bayrak. (2024). Single-station microtremor surveys for site characterization: A case study in Erzurum city, eastern Turkey. Earthquake Engineering and Engineering Vibration, 23(3), p.563. https://doi.org/10.1007/s11803-024-2257-5.

2. Favio Cruz-Hernández, Luis A Gallardo, Marco Calò, Raúl R Castro, José M Romo-Jones. (2022). Ambient noise tomography in the Cerro Prieto Basin, Baja California, Mexico from laterally constrained surface wave inversion. Geophysical Journal International, 229(3), p.1586. https://doi.org/10.1093/gji/ggac017.

3. Vinh Long Ha, Hsin-Hua Huang, Bor-Shouh Huang, Le Minh Nguyen, Van Duong Nguyen, Thi Giang Ha, Quang Khoi Le, Quoc Van Dinh, Tu Son Le, Tien Hung Nguyen, Cong Nghia Nguyen, Kyle Ken Smith, Thuy Thanh Pham. (2024). Geotectonic architecture beneath Northern Vietnam revealed by local earthquake tomography combining seismic data from multiple networks. Tectonophysics, 884, p.230402. https://doi.org/10.1016/j.tecto.2024.230402.

4. Çağlar Özer. (2022). Coda Wave Spatial Variation in Eastern Anatolia, Turkey. Brilliant Engineering, 3(2), p.1. https://doi.org/10.36937/ben.2022.4639.

5. Şeyma Sarigül, Erdem Bayrak. (2024). Investigation of local soil properties of Erzurum province (Eastern Türkiye) by Horizontal/Vertical Spectral ratio method. Bulletin Of The Mineral Research and Exploration, , p.1. https://doi.org/10.19111/bulletinofmre.1574914.

6. Caglar Ozer. (2021). 4-D tomographic change of Vp and Vp/Vs structure before destructive earthquakes: a case study of the Sivrice-Elazığ earthquake (mw = 6.8), Eastern Turkey. Natural Hazards, 108(2), p.1901. https://doi.org/10.1007/s11069-021-04761-2.

7. Erdem BAYRAK, Çağlar ÖZER, Şükran PERK. (2020). Erzurum ve Çevresi İçin Gerilme Tensör ve Coulomb Analizleri. Türk Deprem Araştırma Dergisi, 2(1), p.101. https://doi.org/10.46464/tdad.737222.

8. Orhan GURELİ. (2022). Sismik Hız İle Boşluk Basıncı İlişkisi: Denizli Havzası Örneği. Türk Deprem Araştırma Dergisi, 4(1), p.98. https://doi.org/10.46464/tdad.1042767.

9. Ziyi Li, Lianqing Zhou, Mengqiao Duan, Cuiping Zhao. (2024). Three-dimensional VP, VS, and VP/VS imaging based on AI microseismic detection reveals the mechanism of induced earthquakes in the Xiluodu Reservoir Area, China. Journal of Asian Earth Sciences, 266, p.106123. https://doi.org/10.1016/j.jseaes.2024.106123.

10. Erdem Bayrak. (2020). The Ground-Motion Attenuation Comparison: A case study for the 2017/05/11 Askale earthquake (Mw4.7). Brilliant Engineering, 1(3), p.22. https://doi.org/10.36937/ben.2020.003.004.

11. Emre Mulumulu, Orhan Polat, Francisco J. Chávez-García. (2023). Ambient noise tomography of the Aegean region of Türkiye from Rayleigh wave group velocity. Frontiers in Earth Science, 11 https://doi.org/10.3389/feart.2023.1265986.

Dimensions

PlumX

Article abstract page views

903

Downloads

Download data is not yet available.