Published
Fractures in Volcanic Reservoir: a case study of Zhongguai uplift in Northwestern Margin of Junggar Basin, China
Fracturas en yacimientos volcánicos: caso de estudio del levantamiento de Zhongguai en la margen noreste de la cuenca de Junggar, China
DOI:
https://doi.org/10.15446/esrj.v22n3.75426Keywords:
Tectonic Fractures, Zhongguai Area, volcanic rocks (en)Fracturas tectónicas, área Zhongguai, rocas volcánicas, (es)
Downloads
Fractures in Carboniferous volcanic rocks located at Zhongguai Area (China) highly influence the accumulation and productivity of oil and gas. As such, the study of development periods and genetic mechanisms of tectonic fractures could throw useful information regarding the evaluation and development of that reservoir. Their tectonic origins caused high-angle and oblique shear fractures. The primary orientation of those fractures appears close to EW (270°±10°), NW (300°±15°), NE (45°±15°), and SN (0°±10°). At least four fracture generations can be found in Carboniferous volcanic rocks at Zhongguai Area. Combined with a tectonic evolution, they are based on the segmentation relationship of the fracture fillings, the thermometry measurement of the fracture filling inclusion, and the acoustic emission, as well. Affected by a new horizontal principal stress, the opening and permeability of nearly EW fractures are the best. In this way, a priority in the development of well's patterns should be considered close to EW fractures. The pressure change in the process of exploitation may damage the reservoir permeability of fractured volcano rocks severely. Accordingly, well patterns should be adjusted to dynamic changes of permeability happened during the oilfield development since some differences have been detected in distinct fracture sets.
Las fracturas en las rocas volcánicas del Carbonífero del área de Zhongguai tienen una influencia determinante en la acumulación y producción de petróleo y gas. El estudio de los períodos de desarrollo y el mecanismo genético de las fracturas tectónicas proveen información importante para la evaluación del yacimiento y su desarrollo. En esta zona se encontraron fracturas con un ángulo alto de cizallamiento y fracturas oblicuas causadas por origen tectónico. La orientación principal de las fracturas es cercana a EW (270°±10°), NW (300°±15°), NE (45°±15°) y SN (0°±10°). Se encontraron por lo menos cuatro generaciones de fracturas en las rocas volcánicas del área de Zhongguai. Combinadas con la evolución tectónica, las fracturas están basadas en la relación de segmentación del relleno de las fracturas, la termometría de las inclusiones, y la emisión acústica. Afectadas por esfuerzos horizontales recientes, las fracturas de apertura y permeabilidad con dirección EW son las mejores. Aquellas fracturas cercanas a la dirección EW deben ser consideradas como una prioridad en el desarrollo de los patrones del pozo. El cambio de presión en los procesos de explotación podría causar daños severos en la permeabilidad de las rocas volcánicas fracturadas en el yacimiento. Durante el desarrollo del campo petrolífero, los patrones del pozo deben ser ajustados de acuerdo con los cambios en las dinámicas de permeabilidad ya que las configuraciones de fracturas son diferentes.
References
Espinosa, H., Dwivedi, S., Zavattieri, P., & Yuan, G. (1998). A numerical investigation of penetration in multilayered material/structure systems. International Journal of Solids and Structures, 35, 2975–3001.
Fan, C. & Qin, Q. (2016). Characteristics and formation stages of the reservoir fractures of the Xujiahe Formation in the fault-fold belt of the Central Yuanba Area of the Sichuan Basin. Journal of the Balkan Tribological Association, 22, 1634-1647.
Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strain, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21, 31–48.
Kresse, O., Weng, X., & Gu, H. (2013). Numerical Modeling of Hydraulic Fracture Interaction in Complex Naturally Fractured Formations. Rock Mechanics and Rock Engineering, 46, 555–568.
Lankford, J. (2004). The role of dynamic material properties in the performance of ceramic armor. International Journal of Applied Ceramic Technology, 1, 205–10.
Larsen, B., Grunnaleite, I., Gudmundsson, A. (2010). How fracture systems affect permeability development in shallow-water carbonate rocks; An example from the Gargano Peninsula, Italy. Journal of Structural Geology, 32, 1212-1230.
Lausund, K. B., Johnsen, B. B., Rahbek, D. B., & Hansen, F. K. (2015). Surface treatment of alumina ceramic for improved adhesion to a glass fibre-reinforced polyester composite. International Journal of Adhesion and Adhesives, 63, 34–45.
Lee, M., & Yoo, Y. (2001). Analysis of ceramic/metal armour systems. International Journal of Impact Engineering, 25, 819–29.
Lopez-Puente, J., Arias, A., Zaera, R., & Navarro C. (2005). The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. International Journal of Impact Engineering, 32, 321–326.
Meyer, B. R. & Bazan, L. W. (2011). A Discrete Fracture Network Model for Hydraulically Induced Fractures: Theory, Parametric and Case Studies. Presented at SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, 24–26. SPE-140514-MS.
Nelson, R. A. (2001). Geologic analysis of naturally fractured reservoirs. Boston: Gulf Professional Publishing, 89-94.
Tasdemirci, A., Tunusoglu, G., & Guden, M. (2012). The effect of the interlayer on the ballistic performance of ceramic/composite armors: Experimental and numerical study. International Journal of Impact Engineering. 44, 1–9.
Wu, K. & Olson, J. E. (2015). A Simplified Three-Dimensional Displacement Discontinuity Method for Multiple Fracture Simulations. International Journal of Fracture, 193, 191–204.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Munish Kumar, Ryan Isaac Lazaroo. (2023). Dealing with unique minerals in petrophysical logs. Geoenergy Science and Engineering, 231, p.212332. https://doi.org/10.1016/j.geoen.2023.212332.
2. Hu Li, Hong-ming Tang, Qi-rong Qin, Cun-hui Fan, Song Han, Cang Yang, Cheng Zhong. (2018). Reservoir characteristics and hydrocarbon accumulation of Carboniferous volcanic weathered crust of Zhongguai high area in the western Junggar Basin, China. Journal of Central South University, 25(11), p.2785. https://doi.org/10.1007/s11771-018-3953-y.
3. Hassan Bagheri, Reza Falahat. (2022). Fracture permeability estimation utilizing conventional well logs and flow zone indicator. Petroleum Research, 7(3), p.357. https://doi.org/10.1016/j.ptlrs.2021.11.004.
4. Jun Xie, Xiao Hu, Baichuan Li, Yajun Duan, Huizhen Liang, Yanchun Su, Wuchao Cai, Rui Wang. (2021). Reservoir Characteristics and Main Controlling Factors of the Mesozoic Volcanic Rocks in the D Oilfield in Southern Gentle Slope Zone of the Laizhouwan Sag. Frontiers in Earth Science, 9 https://doi.org/10.3389/feart.2021.663401.
5. Huafeng Tang, Zhiwen Tian, Youfeng Gao, Xiaojuan Dai. (2022). Review of volcanic reservoir geology in China. Earth-Science Reviews, 232, p.104158. https://doi.org/10.1016/j.earscirev.2022.104158.
6. Hao Leng, Huoyin Lv, Fenglei Han, Fabo Liu, Tao Liu. (2021). Permanent magnet treatment technology for crystal blockage of tunnel drainage pipes. Desalination and Water Treatment, 243, p.211. https://doi.org/10.5004/dwt.2021.27795.
7. Ya Ning Wang, Yu Chen Ma, Gan Lu Li, Rini Fahmita. (2020). Process Simulation of Carboniferous Volcanic in Jinlong Area, Junggar Basin. Materials Science Forum, 980, p.449. https://doi.org/10.4028/www.scientific.net/MSF.980.449.
8. O.J. Correia Filho, J.A. Barbosa, T.S. Miranda, G.M.S. Ramos, B.F. Carvalho, A.M. Silva, D.A. Duarte, C.J. Barreto, J.T. Cruz Oliveira, D.O. Barbosa. (2024). Volcanic weathered crust reservoir analog: Insights from fault-controlled fracture permeability in the trachytic rocks of the Pernambuco Basin, NE Brazil. Journal of South American Earth Sciences, 148, p.105140. https://doi.org/10.1016/j.jsames.2024.105140.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2018 Earth Sciences Research Journal
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.