Published

2021-10-27

Prediction of land degradation by Machine Learning Methods

Degradación de la tierra medida a través de métodos de aprendizaje automático: Caso de estudio de la cuenca Sharifabad, en Irán Central

DOI:

https://doi.org/10.15446/esrj.v25n3.75821

Keywords:

Groundwater level, Partial least square regression (PLSR), Artificial neural networks (ANN), Adaptive Neuro-Fuzzy Inference System(ANFIS), Land degradation (en)

Downloads

Authors

  • Vahid Habibi Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Hassan Ahmadi Faculty of Natural Resource, University of Tehran, Karaj, Iran
  • Mohammad Jaffari Faculty of Natural Resource, University of Tehran, Karaj, Iran
  • Abolfazl Moeini Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

In this study, three models were used to monitor and predict the GWL and the land degradation index via the IMDPA method. In all models, 70% of the data was applied for training, while 30% of data were employed for testing and validation. Monthly rainfall, TWI index, the distance of the river, Geographic location was the inputs and the level of groundwater was the output of each method. we found that ANN has the highest efficiency, which agrees with other findings. We combined the results of ANN with Ordinary Kriging and produced a groundwater condition map. According to the potential desertification map and groundwater level index, the potential of desertification had become severe since 2002 and was at a rate of 60% of land area, which, due to incorrect land management in 2016, increased to almost 98% of the land surface in the study area. Using ANN, we predicted that around 99% of the area was severely degraded for 2017. We also used latitude and longitude as input variables which improved the model. In addition to the target variable, latitude and longitude play important roles in Ordinary Kriging and decreased the total error of two combined models.

Con el fin de monitorear y predecir los niveles de agua subterránea en la cuenca Sharifabad, provincia Central de Irán, se utilizaron los modelos Regresión de mínimos cuadrados parciales (PLSR, del inglés Partial Least Square Regression), Redes neuronales artificiales (ANN, Artificial Neural Networks), y Sistema de inferencia de neurodifusión adaptativo (ANFIS, Adaptive Neuro-Fuzzy Inference System). El 70 % de la información fue utilizada para probar los tres modelos, mientras que el 30 % se empleo en la evaluación y validación. La pluviosidad mensual, el índice topográfico de humedad (TWI index), la distancia al río y la ubicación geográfica fueron los datos ingresados, mientras que el índice de agua subterránea es el resultado de cada método. Se observó que el modelo ANN es el de mayor eficiencia, y que es acorde con otros hallazgos. Los resultados del modelo ANN se utilizaron en la preparación del mapa de distribución de aguas freáticas o subterráneas. De acuerdo con el mapa de desertificación potencial y el índice de agua subterránea, el potencial de la desertificación se ha vuelto severa desde 2002. Esto significa que desde el 60 % del suelo que, debido a un manejo incorrecto en 2016, se llegó hasta casi el 98 % de terreno en el área de estudio. Con el modelo ANN se predice que el 100 % del área se degradará severamente para 2025. Además de la variación del objetivo, la latitud y la longitud juegan papeles importantes en el kriging ordinario y en la reducción del error total de los dos modelos restantes.

References

Abudu, S., Cui, C., King, J. P., & Abudukadeer, K. (2010). Comparison of performance of statistical models in forecasting monthly streamflow of Kizil River, China. Water Science and Engineering, 3(3), 269-281. DOI: 10.3882/j.issn.1674-2370.2010.03.003

Afzaal, H., Farooque, A. A., Abbas, F., Acharya, B., & Esau, T. (2020). Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning. Water, 12(1). https://doi.org/10.3390/w12010005

Ahmed, A. A. M., & Shah, S. M. A. (2017). Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. Journal of King Saud University - Engineering Sciences, 29(3), 237-243. DOI: 10.1016/j.jksues.2015.02.001

Ahmadi, H. (2008). Introduction of Iranian Model of Desertification Assessment IMDPA. Technical Report for presenting in Committee of Science and Technology, United Nation Convention to combat desertification. The 7th Session of Conference of Parties COP7, Nairobi, Kenyan, 56 pp.

Alipour, Z., Akhund Ali, A. M., Radmanesh, F., & Joorabyan, M. (2014). Comparison of three methods of ANN, ANFIS and Time Series Models to predict ground water level. Bulletin of Environment, Pharmacology and Life Sciences, 3,128-134.

Alizamir, M., Sobhanardakani, S., & Taghavi, L. (2017). Modeling of Groundwater Resources Heavy Metals Concentration Using Soft Computing Methods: Application of Different Types of Artificial Neural Networks. Journal of Chemical Health Risks, 73, 207–216.

Alqadi, M., Margane, A., Raggad, M., Al Subah, H. A., Disse, M., Hamdan, I., & Chiogna, G. (2019). Implementation of simple strategies to improve wellfield management in arid regions: The case study of Wadi Al Arab Wellfield, Jordan. Sustainability, 11(21), 5903. https://doi.org/10.3390/su11215903

Ashrafzadeh, A., Roshandel, F., Khaledian, M., Vazifedoust, M., & Rezaei, M. (2016) Assessment of groundwater salinity risk using kriging methods: A case study in northern Iran. Agricultural Water Management, 178. DOI: 10.1016/j.agwat.2016.09.028

Baghban, A., Sasanipour, J., Haratipour P., Alizad, M., & Ayouri, M. V. (2017). ANFIS modeling of rhamnolipid breakthrough curves on activated carbon. Chemical Engineering Research and Design, 126. DOI: 10.1016/j.cherd.2017.08.007

Bessaih, N., Qureshi, M., Al-Jabri, F. S., Al-Harmali, I. R., Al Naamani, Z. A. (2014). Groundwater water level prediction in Wadi EL Jezzy Catchment using ANN. In: Lecture Notes in Engineering and Computer Science.

Bodrud-Doza, M., Islam, A. R. M. T., Ahmed, F., Das, S., Saha, N., Rahman, S. (2016). Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Science, 30, 19-40 DOI: 10.1016/j.wsj.2016.05.001

Chen, C., He, W., Zhou, H., Xue, Y., & Zhu, M. (2020). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific Reports, 10:3904. https://doi.org/10.1038/s41598-020-60698-9

Chitsazan, M., Rahmani, G. R., Neyamadpour, A. (2013). Groundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran. Geopersia, 3(1), 35-46. 10.22059/JGEOPE.2013.31930

Chun, H., & Keleş, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 72(1), 3-25. DOI: 10.1111/j.1467-9868.2009.00723.x

Dhungana, S., (2015). Comparison of multivariate methods to predict the quality of drinking water in Norway. MS.C. Thesis. Faculty of Veterinary Medicine and Biosciences. Norway.

Dubovyk, O. (2017). The role of Remote Sensing in land degradation assessments: opportunities and challenges. European Journal of Remote Sensing, 50(1), 601-613. https://doi.org/10.1080/22797254.2017.1378926

Ekhtesasi, M. R., & Mohajeri. S. (1995). Iranian classification of desertification method. Second National Conference of Desertification and Combating Desertification Methods, Kerman, Iran, 121-134.

Emamgholizadeh, S., Moslemi, K., & Karami, G. (2014). Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resources Management, 28, 5433-5446. DOI: 10.1007/s11269-014-0810-0

Ennouri, K., Ben Ayed, R., Triki, M. A., Ottaviani, E., Mazzarello, M., Hertelli, F., & Zouari, N. (2017). Multiple linear regression and artificial neural networks for delta-endotoxin and protease yields modelling of Bacillus thuringiensis. 3 Biotech, 7(3). DOI: 10.1007/s13205-017-0799-1

Esen, H., & Inalli, M. (2010). ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system. Expert Systems with Applications: An International Journal, 37(12), 81-34-8147. DOI: 10.1016/j.eswa.2010.05.074

FAO (2002). Land Degradation Assessment in Dry lands: LADA. FAO, Rome.

FAO–UNEP. (1984). Provisional Methodology for Assessment and Mapping of Desertification. FAO, Rome, 84 p.

Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S. D., Tucker, C., ... Wessels, K. (2012). Greenness in semi-arid areas across the globe 1981-2007 - an Earth Observing Satellite based analysis of trends and drivers. Remote Sensing of Environment, 121, 144-158. DOI: 10.1016/j.rse.2012.01.017

Ferrara, A., Kosmas, C., Salvati, L., Padula, A., Mancino, G., & Nolè, A. (2020). Updating the MEDALUS-ESA Framework for Worldwide Land Degradation and Desertification Assessment. Land Degradation and Development, 31(12), 1593-1607. https://doi.org/10.1002/ldr.3559

Gong, Y., Wang, Z., Xu, G., & Zhang, Z. (2018). A Comparative Study of Groundwater Level Forecasting Using Data-Driven Models Based on Ensemble Empirical Mode Decomposition. Water, 10 730, 1-20. DOI: 10.3390/w10060730

Gad, M., El-Hendawy, S., Al-Suhaibani, N., Tahir, M. U., Mubushar, M., & Elsayed, S. (2020). Combining hydrogeochemical characterization and a hyperspectral reflectance tool for assessing quality and suitability of two groundwater resources for irrigation in Egypt. Water, 12(8), 2169. https://doi.org/10.3390/W12082169

Grabs, T., Seibert, J., Bishop, K., & Laudon, H. (2009). Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 373(1-2), 15-23. DOI: 10.1016/j.jhydrol.2009.03.031

Humbert, G., Jaffrezic, A., Fovet, O., Gruau, G., & Durand, P. (2015). Dry-season length and runoff control annual variability in stream DOC dynamics in a small, shallow groundwater-dominated agricultural watershed. Water Resources Research, 51(10), 7860-7877. DOI: 10.1002/2015WR017336

Ibrahim, N., & Wibowo, A. (2013). Partial least squares regression based variables selection for water level predictions. American Journal of Applied Sciences, 10(4), 322-330. DOI: 10.3844/ajassp.2013.322.330

Jafari, K., Asghari, F. B., Hoseinzadeh, E., Heidari, Z., Radfard, M., Saleh, H. N., & Faraji, H. (2018). Groundwater quality assessment for drinking and agriculture purposes in Abhar city, Iran. Data in Brief, 19, 1033-1039. https://doi.org/10.1016/j.dib.2018.05.096

Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685. DOI: 10.1109/21.256541

Jeihouni, M., Delirhasannia, R., Alavipanah, S. K., & Shahabi, M. (2015). Spatial analysis of groundwater electrical conductivity using ordinary kriging and artificial intelligence methods (Case study: Tabriz plain, Iran). Geofizika, 32(5), 191-208. DOI: 10.15233/gfz.2015.32.9

Karimi, P., Qureshi, A. S., Bahramloo, R., & Molden, D. (2012). Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran. Agricultural Water Management, 108, 52-60. DOI: 10.1016/j.agwat.2011.09.001

Kawamura, K., Tsujimoto, Y., Rabenarivo, M., Asai, H., Andriamananjara, A., & Rakotoson, T. (2017). Vis-NIR spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar. Remote Sensing, 9(10), 1081. https://doi.org/10.3390/rs9101081

Kazemi, S. M., & Hosseini, S. M. (2011). Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea. Expert Systems with Applications: An International Journal, 38(3), 1632-1649. DOI: 10.1016/j.eswa.2010.07.085

Li, G., Zhou, X., Liu, J., et al (2018). Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei province. PLoS Neglected Tropical Diseases, 12(2): e0006262. DOI: 10.1371/journal.pntd.0006262

Lim, D. K. H., & Kolay, P. K. (2009). Predicting Hydraulic Conductivity k of Tropical Soils by using Artificial Neural Network ANN. UNIMAS E-Journal of Civil Engineering, 1, 1-6, http://ir.unimas.my/id/eprint/3106

Lohani, A. K., & Krishan, G. (2015). Groundwater Level Simulation Using Artificial Neural Network in Southeast, Punjab, India. Journal of Geology & Geophysics, 4(3), 1000206. DOI: 10.4172/jgg.1000206

Khaki, M., Yussof, I. B., Islami, N. F., & Hussin, N. H. (2016). Artificial Neural Network Technique for Modeling of Groundwater Level in Langat Basin, Malaysia. Sains Malaysiana, 45(1), 19-28.

Masoudi, M., & Amiri, E. (2015). A new model for hazard evaluation of vegetation degradation using DPSIR framework, a case study: Sadra region, Iran. Polish Journal of Ecology, 63(1), 1-9. DOI: 10.3161/15052249PJE2015.63.1.001

Masoudi, M., Jokar, P., & Pradhan, B. (2018). A New Approach for Land Degradation and Desertification Assessment Using Geospatial Techniques. Natural Hazards and Earth System Sciences. DOI: 10.5194/nhess-2017-343

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115-133. DOI: 10.1007/BF02478259

Meshram, S. G., Singh, V. P., Kisi, O., Karimi, V., & Meshram, C. (2020). Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction. Water Resources Management, 34, 4561-4575. https://doi.org/10.1007/s11269-020-02672-8

Mirzaei, A., Saghafian, B., Mirchi, A., & Madani, K. (2019). The Groundwater‒Energy‒Food Nexus in Iran’s Agricultural Sector: Implications for Water Security. Water, 11, 1835.

Mohanty, S., Jha, M. K., Kumar, A., & Sudheer, K. P. (2010). Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resource Management, 24, 1845-1865. DOI: 10.1007/s11269-009-9527-x

Morales, N. S., & Zuleta, G. A. (2020). Comparison of different land degradation indicators: Do the world regions really matter? Land Degradation and Development, 31(6), 721-733. https://doi.org/10.1002/ldr.3488

Nair, S. S., Sindhu, D. G. (2016). Groundwater level forecasting using Artificial Neural Network. International Journal of Scientific and Research Publications, 6, 234-238, DOI: https://doi.org/10.1007/978-3-319-40195-9

Okin, G. S., Parsons, A. J., Wainwright, J., Herrick, J. E., Bestelmeyer, B. T., Peters, D. C., & Fredrickson, E. L. (2009). Do Changes in Connectivity Explain Desertification? Bioscience, 59(3), 237-244. DOI: 10.1525/bio.2009.59.3.8

Oldeman, L. R. (1994). The global extent of land degradation. Wallingford (United Kingdom).)

Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B., & Simmons, C. T. (2019). Representative pumping wells network to estimate groundwater withdrawal from aquifers: Lessons from a developing country, Iran. Journal of Hydrology, 578:124090. https://doi.org/10.1016/j.jhydrol.2019.124090

Parmar, K., & Bhardwaj, R. (2014). Water quality management using statistical analysis and time-series prediction model. Applied Water Science, 4, 425-434. DOI: 10.1007/s13201-014-0159-9

Pektaş, A. O., & Doğan, E. (2015). Prediction of bed load via suspended sediment load using soft computing methods. Geofizika, 32. DOI: 10.15233/gfz.2015.32.2

Porte, P., Isaac, R. K., Mahilang, K. K. S., Sonboier, K., & Minj, P. (2018). Groundwater Level Prediction Using Artificial Neural Network Model. International Journal of Current Microbiology and Applied Sciences, 72, 2947-2954. https://doi.org/10.20546/ijcmas.2018.702.358

Quyet, M. V. (2014). Multi-Level Assessment of Land Degregation, The Case of Vietnam. PhD Thesis, ETH Zurich Research Collection, 128

Ranković, B., Kosanić, M, Stanojković, T., Vasiljević, P., & Manojlović, N. (2012). Biological activities of toninia candida and usnea barbata together with their norstictic acid and usnic acid constituents. International Journal of Molecular Sciences, 13(11), 14707-14722. DOI: 10.3390/ijms131114707

Ranković, V., Novaković, A., Grujović N., Divac, D., & Milivojević, N. (2014). Predicting piezometric water level in dams via artificial neural networks. Neural Computing and Applications, 24, 1115-1121. DOI: 10.1007/s00521-012-1334-2

Ranković, V., Radulović, J., Radojević, I., Ostojić, A., & Čomić, L. (2010). Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecological Modelling, 221(8), 1239-1244. DOI: 10.1016/j.ecolmodel.2009.12.023

Rasmy, M., Gad, A., Abdelsalam, H., & Siwailam, M. (2010). A dynamic simulation model of desertification in Egypt. The Egyptian Journal of Remote Sensing and Space Science, 13(2), 101-111. DOI: 10.1016/j.ejrs.2010.03.001

Roy, P. P., & Roy, K. (2008). On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Combinatorial Science, 27(3), 302-313. DOI: 10.1002/qsar.200710043

Sahoo, S., & Jha, M. K. (2013). Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrogeology Journal, 21, 1865-1887. DOI: 10.1007/s10040-013-1029-5

Sethi, R. R., Kumar, A., Sharma, S. P., & Verma, H. C. (2010). Prediction of water table depth in a hard rock basin by using artificial neural network. International Journal of Water Resources and Environmental Engineering, 2(4), 95-102.

Shammout, M. W., Qtaishat, T., Rawabdeh, H., & Shatanawi, M. (2018). Improving water use efficiency under deficit irrigation in the Jordan Valley. Sustainability, 10(11), 4317. https://doi.org/10.3390/su10114317

Solgi, A., Pourhaghi, A., Bahmani, R., & Zarei, H. (2017). Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD). Ecohydrology & Hydrobiology, 17(2), 164-175. DOI: 10.1016/j.ecohyd.2017.02.002

Sophocleous, M. (2005). Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeology Journal, 13, 351-365. DOI: 10.1007/s10040-004-0385-6

Taddese, G. (2001). Land degradation: A challenge to Ethiopia. Environmental Management, 27(6), 815-824. DOI:10.1007/s002670010190

Tahmoures, M., Jafaria, M., Ahmadi, H., & Naghiloo, M. (2013). An Integrated Methodology for Assessment and Mapping of Land Degradation Risk in Markazi Province, Iran. Desert, 18, 27-43.

Tan, Y., Shuai, C., Jiao, L., & Shen, L. (2017). An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance. Environmental Impact Assessment Review, 65, 29-40. DOI: 10.1016/j.eiar.2017.04.004

Tekin, Y., Tümsavas, Z., & Mouazen, A. M. (2014). Comparing the artificial neural network with parcial least squares for prediction of soil organic carbon and pH at different moisture content levels using visible and near-infrared spectroscopy. Revista Brasileira de Ciência do Solo, 38(6). DOI: 10.1590/S0100-06832014000600014

Thomas, D. S. G. (1997). Science and the desertification debate. Journal of Arid Environments, 37(4), 599-608. DOI: 10.1006/jare.1997.0293

Tzanakakis, V., Mauromoustakos, A., & Angelakis, A. (2014). Prediction of Biomass Production and Nutrient Uptake in Land Application Using Partial Least Squares Regression Analysis. Water, 7(1), 1-11. DOI: 10.3390/w7010001

Van, L. G. W. J., & Oldeman, L. R. (1997). The Assessment of the Status of Human-Induced Soil Degradation in South and Southeast Asia. International Soil Reference and Information Centre.

Verner, D., Lee, D., & Ashwill, M. (2013). Increasing Resilience to Climate Change in the Agricultural Sector of the Middle East: The Cases of Jordan and Lebanon. World Bank Publications: Washington, DC, USA.

Webster, R. & Oliver, M. A. (2007). Geostatistics for Environmental Scientists Statistics in Practice. Wiley.

Wold, H. (1985). Partial least squares. Encyclopedia of Statistical Sciences. DOI: 10.1002/0471667196

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. https://doi.org/10.1016/S0169-7439(01)00155-1

Wu, W. Y., Lo, M. H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J. F., Ducharne, A., & Yang, Z. L. (2020). Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, 11, 3710. https://doi.org/10.1038/s41467-020-17581-y

Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A bibliometric analysis on land degradation: Current status, development, and future directions. Land, 9(1), 28. https://doi.org/10.3390/land9010028

Yaghobi, A., Khalilimoghadam, B., Saedi, T., & Rahnama, M. (2018). The effect of exclosure management on the reduction of SOC loss due to splash erosion in gypsiferous soils in Southwestern Iran. Geoderma, 319, 34–42. https://doi.org/10.1016/j.geoderma.2017.12.037

Yesilnacar, M. I., & Sahinkaya, E. (2012). Artificial neural network prediction of sulfate and SAR in an unconfined aquifer in southeastern Turkey. Environmental Earth Sciences, 67(4). DOI: 10.1007/s12665-012-1555-9

Zehtabian, G., & Jafari, R. (2002). Evaluation of water resources degradation in Kashan area using desertification model. Journal of Environmental Studies, 28, 19–30.

How to Cite

APA

Habibi, V., Ahmadi, H., Jaffari, M. and Moeini, A. (2021). Prediction of land degradation by Machine Learning Methods. Earth Sciences Research Journal, 25(3), 353–362. https://doi.org/10.15446/esrj.v25n3.75821

ACM

[1]
Habibi, V., Ahmadi, H., Jaffari, M. and Moeini, A. 2021. Prediction of land degradation by Machine Learning Methods. Earth Sciences Research Journal. 25, 3 (Oct. 2021), 353–362. DOI:https://doi.org/10.15446/esrj.v25n3.75821.

ACS

(1)
Habibi, V.; Ahmadi, H.; Jaffari, M.; Moeini, A. Prediction of land degradation by Machine Learning Methods. Earth sci. res. j. 2021, 25, 353-362.

ABNT

HABIBI, V.; AHMADI, H.; JAFFARI, M.; MOEINI, A. Prediction of land degradation by Machine Learning Methods. Earth Sciences Research Journal, [S. l.], v. 25, n. 3, p. 353–362, 2021. DOI: 10.15446/esrj.v25n3.75821. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/75821. Acesso em: 16 apr. 2024.

Chicago

Habibi, Vahid, Hassan Ahmadi, Mohammad Jaffari, and Abolfazl Moeini. 2021. “Prediction of land degradation by Machine Learning Methods”. Earth Sciences Research Journal 25 (3):353-62. https://doi.org/10.15446/esrj.v25n3.75821.

Harvard

Habibi, V., Ahmadi, H., Jaffari, M. and Moeini, A. (2021) “Prediction of land degradation by Machine Learning Methods”, Earth Sciences Research Journal, 25(3), pp. 353–362. doi: 10.15446/esrj.v25n3.75821.

IEEE

[1]
V. Habibi, H. Ahmadi, M. Jaffari, and A. Moeini, “Prediction of land degradation by Machine Learning Methods”, Earth sci. res. j., vol. 25, no. 3, pp. 353–362, Oct. 2021.

MLA

Habibi, V., H. Ahmadi, M. Jaffari, and A. Moeini. “Prediction of land degradation by Machine Learning Methods”. Earth Sciences Research Journal, vol. 25, no. 3, Oct. 2021, pp. 353-62, doi:10.15446/esrj.v25n3.75821.

Turabian

Habibi, Vahid, Hassan Ahmadi, Mohammad Jaffari, and Abolfazl Moeini. “Prediction of land degradation by Machine Learning Methods”. Earth Sciences Research Journal 25, no. 3 (October 27, 2021): 353–362. Accessed April 16, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/75821.

Vancouver

1.
Habibi V, Ahmadi H, Jaffari M, Moeini A. Prediction of land degradation by Machine Learning Methods. Earth sci. res. j. [Internet]. 2021 Oct. 27 [cited 2024 Apr. 16];25(3):353-62. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/75821

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Joshua Edwards, Gulustan Dogan, Narcisa Pricope. (2023). Comparison of Machine and Deep Learning Models for the Prediction of Land Degradation. 2023 6th International Conference on Information and Computer Technologies (ICICT). , p.5. https://doi.org/10.1109/ICICT58900.2023.00009.

2. Fajar Yulianto, Puguh Dwi Raharjo, Irfan Budi Pramono, Muhammad Anggri Setiawan, Galdita Aruba Chulafak, Gatot Nugroho, Anjar Dimara Sakti, Sapto Nugroho, Syarif Budhiman. (2023). Prediction and mapping of land degradation in the Batanghari watershed, Sumatra, Indonesia: utilizing multi-source geospatial data and machine learning modeling techniques. Modeling Earth Systems and Environment, 9(4), p.4383. https://doi.org/10.1007/s40808-023-01761-y.

Dimensions

PlumX

Article abstract page views

323

Downloads

Download data is not yet available.