Published
Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel
Efectos de la altura de la vegetación y de la inmersión relativa en vegetación rígida en la corriente de un canal abierto
DOI:
https://doi.org/10.15446/esrj.v26n1.76187Keywords:
Rigid submerged vegetation, Vegetation height, Relative submergence, Flow structure, Water depth, Flow velocity distribution (en)vegetación sumergida rígida; Altura de la vegetación; inmersión relativa; Flujo Estructura; Profundidad del agua; Distribución de la velocidad (es)
Downloads
La vegetación en las corrientes de un río natural interactúa con el flujo de agua de una manera no lineal. En esta investigación se estudia la altura de la vegetación y un concepto de inmersión relativa para investigar experimentalmente los efectos de la vegetación rígida sumergida en una estructura de flujo. Los resultados revelan que las submersiones relativas decrecen a lo largo de la sección de vegetación sumergida. Desde la perspectiva del caso promedio, la relación lineal entre la profundidad del agua y la altura de la vegetación demuestra una tendencia a la baja del promedio de la inmersión relativa a medida que se incrementa la altura de la vegetación. Las diferencias entre la profundidad mínima y máxima del agua en los casos de inmersión puede describirse a través de una función lineal positiva con la altura de la vegetación y una función de poder negativa con inmersión relativa, por lo que el incremento del nivel del agua ocasionado por el bloqueo de la vegetación se puede predecir con condiciones hidráulicas similares. Los hallazgos de la investigación, especialmente la introducción de la inmersión relativa y su relación funcional con la alternación de la profundidad del agua inducida por la vegetación sumergida, pueden mejorar los amplios conocimientos de los comportamientos hidráulicos en un canal abierto con vegetación y pueden ofrecer información para la restauración ecológica de ríos.
References
Ben Meftah, M. & Mossa, M. (2013). Prediction of channel flow characteristics through square arrays of emergent cylinders. Physics of Fluids, 25(4), 13-25. DOI: 10.1063/1.4802047 DOI: https://doi.org/10.1063/1.4802047
Callow J. N. (2012). Potential for vegetation-based river management in dryland, saline catchments. River Research and Applications, 28(8), 1072-1092. DOI: 10.1002/rra.1506 DOI: https://doi.org/10.1002/rra.1506
Chanson H. (2004). The hydraulics of open channel flows: an introduction (second edition). Elsevier Butterworth-Heinemann, Oxford, United Kingdom, 585 pp. DOI: 10.1016/B978-0-7506-5978-9.X5000-4 DOI: https://doi.org/10.1016/B978-075066165-2.50033-3
Chauhan M. & Gopal B. (2005). Vegetation structure and dynamics of a floodplain wetland along a subtropical regulated river. River Research and Applications, 21(5), 513-534. DOI: 10.1002/rra.821 DOI: https://doi.org/10.1002/rra.821
Chow, V. T. (1959). Open-channel hydraulics. Mc-Graw Hill, New York, United States, 680 pp.
Coon W. F. (1998). Estimation of roughness coefficients for natural stream channels with vegetated banks. US Geological Survey Water-Supply Paper, Reston, United States, 133 pp. DOI: 10.3133/wsp2441 DOI: https://doi.org/10.3133/wsp2441
Fathi-Moghadam, M., Kashefipour, M., Ebrahimi, N. & Emamgholizadeh, S. (2011). Physical and numerical modeling of submerged vegetation roughness in rivers and flood plains. Journal of Hydrologic Engineering, 16(11), 858-864. DOI: 10.1061/(ASCE)HE.1943-5584.0000381 DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000381
Fathi-Maghadam, M. & Kouwen, N. (1997). Nonrigid, nonsubmerged, vegetative roughness on floodplains. Journal of Hydraulic Engineering, 123(1), 51-57. DOI: 10.1061/(ASCE)0733-9429(1997)123:1(51) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1997)123:1(51)
Friberg, N., Harrison, L., O'Hare, M. & Tullos, D. Restoring rivers and floodplains: hydrology and sediments as drivers of change. Ecohydrology, 10(5), e1884. DOI: 10.1002/eco.1884 DOI: https://doi.org/10.1002/eco.1884
Green, J. C. (2005). Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes. River Research Applications, 21(6), 671-686. DOI: 10.1002/rra.854 DOI: https://doi.org/10.1002/rra.854
Gualtieri, P., Felice, S. D., Pasquino, V. & Doria, G. P. (2018). Use of conventional flow resistance equations and a model for the Nikuradse roughness in vegetated flows at high submergence. Journal of Hydrology and Hydromechanics, 66(1), 107-120. DOI: 10.1515/johh-2017-0028 DOI: https://doi.org/10.1515/johh-2017-0028
Huai, W. X., Zeng, Y. H., Xu, Z. G. & Yang, Z. H. (2009). Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation. Advances in Water Resources, 32(4), 487-492. DOI: 10.1016/j.advwatres.2008.11.014 DOI: https://doi.org/10.1016/j.advwatres.2008.11.014
Järvelä, J. (2005). Effect of submerged flexible vegetation on flow structure and resistance. Journal Hydrology, 307(1-4), 233-241. DOI: 10.1016/j.jhydrol.2004.10.013 DOI: https://doi.org/10.1016/j.jhydrol.2004.10.013
Jing, Y., Zhang, H. Y., Wang, Z. Y., Xu, W. G., Ji, C. M. & Zhang H. (2010). The change of relative turbulence intensity within the reed population, Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition, Vancouver, Canada, November, 8, 397-401. DOI: 10.1115/IMECE2010-40783 DOI: https://doi.org/10.1115/IMECE2010-40783
Kouwen, N. & Fathi-Moghadam, M. (2000). Friction factors for coniferous trees along rivers. Journal of Hydraulic Engineering, 126(10), 732-740. DOI: 10.1061/(ASCE)0733-9429(2000)126:10(732) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732)
Lama, G. F. C., Crimaldi, M., Pasquino, V., Padulano, R. & Chirico, G. B. (2021). Bulk drag predictions of riparian Arundo donax stands through UAV-acquired multispectral images. Water, 13(10), 1333. DOI: 10.3390/w13101333 DOI: https://doi.org/10.3390/w13101333
Liu, D., Valyrakis, M. & Williams, R. (2017). Flow hydrodynamics across open channel flows with riparian zones: implications for riverbank stability. Water, 9(9), 720. DOI: 10.3390/w9090720 DOI: https://doi.org/10.3390/w9090720
Manes, C., Pokrajac D. & McEwan I. (2007). Double-averaged open-channel flows with small relative submergence. Journal of Hydraulic Engineering, 133(8), 896-904. DOI: 10.1061/(ASCE)0733-9429(2007)133:8(896) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(896)
McBride, M., Hession, W. C., Rizzo, D. M. & Thompson, D. M. (2007). The influence of riparian vegetation on near-bank turbulence: a flume experiment. Earth Surface Processes and Landforms, 32(13), 2019-2037. DOI: 10.1002/esp.1513 DOI: https://doi.org/10.1002/esp.1513
Musleh, F. A. & Cruise, J. F. (2006). Functional relationships of resistance in wide flood plains with rigid unsubmerged vegetation. Journal Hydraulic Engineering, 132(2), 163-171. DOI: 10.1061/(ASCE)0733-9429(2006)132:2(163) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(163)
Najafabadi, E. F., Afzalimehr, H. & Sui, J. Y. (2015). Turbulence characteristics of favorable pressure gradient flows in gravel-bed channel with vegetated walls. Journal of Hydrology and Hydromechanics, 63(2), 154-163. DOI: 10.1515/johh-2015-0019 DOI: https://doi.org/10.1515/johh-2015-0019
Nepf, H. M. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479-489. DOI: 10.1029/1998WR900069 DOI: https://doi.org/10.1029/1998WR900069
Nepf, H. M. (2012). Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics, 44, 123-142. DOI: 10.1146/annurev-fluid-120710-101048 DOI: https://doi.org/10.1146/annurev-fluid-120710-101048
Nezu, I. & Sanjou, M. (2008). Turbulence structure and coherent motion in vegetated canopy open-channel flows. Journal of Hydro-environment Research, 2(2), 62-90. DOI: 10.2208/journalam.10.795 DOI: https://doi.org/10.1016/j.jher.2008.05.003
Nikora, N., Nikora, V. & O’Donoghue, T. (2013). Velocity profiles in vegetated open-channel flows: combined effects of multiple mechanisms. Journal of Hydraulic Engineering, 139(10), 1021-1032. DOI: 10.1061/(ASCE)HY.1943-7900.0000779 DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000779
O'Briain, R., Shephard, S. & Coghlan, B. (2017). River reaches with impaired riparian tree cover and channel morphology have reduced thermal resilience. Ecohydrology, 10(8), e1890. DOI: 10.1002/eco.1890 DOI: https://doi.org/10.1002/eco.1890
Okamoto, T., Nezu, I. & Ikeda, H. (2014). Vertical mass and momentum transport in open-channel flows with submerged vegetations. Journal of Hydro-environment Research, 6(4), 287-297. DOI: 10.1016/j.jher.2012.03.002 DOI: https://doi.org/10.1016/j.jher.2012.03.002
Pasquino, V., Gualtieri, P. & Doria, G.P. (2016). On evaluating flow resistance of rigid vegetation using classic hydraulic roughness at high submergence levels: An experimental work. In: Rowiński, P. & Marion A. (Editor). Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces, Springer, Cham, Switzerland, 269-277. DOI: 10.1007/978-3-319-27750-9_22 DOI: https://doi.org/10.1007/978-3-319-27750-9_22
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. (2004). The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorology, 111, 565–587. DOI: 10.1023/B:BOUN.0000016576.05621.73 DOI: https://doi.org/10.1023/B:BOUN.0000016576.05621.73
Pujol, D., Colomer, J., Serra, T. & Casamitjana, X. (2010). Effect of submerged aquatic vegetation on turbulence induced by an oscillating grid. Continental Shelf Research, 30(9), 1019-1029. DOI: 10.1016/j.csr.2010.02.014 DOI: https://doi.org/10.1016/j.csr.2010.02.014
Qian, F., Cheng, D. B., Ding W. F., Huang J. S. & Liu J. J. (2016). Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China. Journal of Hydrology and Hydromechanics, 64(3), 237-245. DOI: 10.1515/johh-2016-0029 DOI: https://doi.org/10.1515/johh-2016-0029
Rhee, D. S., Woo, H., Kwon, B. A. & Ahn, H. K. (2008). Hydraulic resistance of some selected vegetation in open channel flows. River Research and Applications, 24(5), 673-687. DOI: 10.1002/rra.1143 DOI: https://doi.org/10.1002/rra.1143
Sandercock, P. J. & Hooke, J. M. (2010). Assessment of vegetation effects on hydraulics and of feedbacks on plant survival and zonation in ephemeral channels. Hydrological Processes, 24(6), 695-713. DOI: 10.1002/hyp.7508 DOI: https://doi.org/10.1002/hyp.7508
Stone, B. M. & Shen, H. T. (2002). Hydraulic resistance of flow in channels with cylindrical roughness. Journal of Hydraulic Engineering, 128(5), 500-506. DOI: 10.1061/(ASCE)0733-9429(2002)128:5(500) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
Temmerman, S., Bouma, T. J., Govers, G., Wang, Z. B., De Vries, M. B. & Herman, P. M. J. (2005). Impact of vegetation on flow routing and sedimentation patterns: three-dimensional modeling for a tidal marsh. Journal of Geophysical Research, 110(F4), F04019. DOI: 10.1029/2005JF000301 DOI: https://doi.org/10.1029/2005JF000301
Thorne, C. R. (1990). Vegetation and erosion: Processes and environments. Wiley, Chichester, United Kingdom, 518 pp.
Velasco, D., Bateman, A., Redondo, J. M. & Demedina, V. (2003). An open channel flow experimental and theoretical study of resistance and turbulent characterization over flexible vegetated linings. Flow, Turbulence and Combustion, 70, 69-88. DOI: 10.1023/B:APPL.0000004932.81261.40 DOI: https://doi.org/10.1023/B:APPL.0000004932.81261.40
White, B. L. & Nepf, H. M. (2003). Scalar transport in random cylinder arrays at moderate Reynolds number. Journal of Fluid Mechanics, 487, 43-79. DOI: 10.1017/S0022112003004579 DOI: https://doi.org/10.1017/S0022112003004579
Wilson, C. A. M. E. (2007). Flow resistance models for flexible submerged vegetation. Journal of Hydrology, 342(3-4), 213-222. DOI: 10.1016/j.jhydrol.2007.04.022 DOI: https://doi.org/10.1016/j.jhydrol.2007.04.022
Wu, F. C., Shen, H. W. & Chou, Y. J. (1999). Variation of roughness coefficients for unsubmerged and submerged vegetation. Journal of Hydraulic Engineering, 125(9), 934-942. DOI: 10.1061/(ASCE)0733-9429(1999)125:9(934) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(934)
Yagci, O., Tschiesche, U. & Kabdasli, M. S. (2010). The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics. Advances in Water Resources, 33(5), 601-614. DOI: 10.1016/j.advwatres.2010.03.008 DOI: https://doi.org/10.1016/j.advwatres.2010.03.008
Yokojima, S., Kawahara, Y. & Yamamoto, T. (2015). Impacts of vegetation configuration on flow structure and resistance in a rectangular open channel. Journal of Hydro-environment Research, 9(2), 295-303. DOI: 10.1016/j.jher.2014.07.008 DOI: https://doi.org/10.1016/j.jher.2014.07.008
Zhang, G. H., Liu, G. B., Yi, L. & Zhang, P. C. (2014). Effects of patterned Artemisia capillaris on overland flow resistance under varied rainfall intensities in the Loess Plateau of China. Journal of Hydrology and Hydromechanics, 62(4), 334-342. DOI: 10.2478/johh-2014-0035 DOI: https://doi.org/10.2478/johh-2014-0035
Zhang, H. Y., Wang, Z. Y., Dai, L. M. & Xu, W. G. (2015a). Influence of vegetation on turbulence characteristics and Reynolds shear stress in partly vegetated channel. Journal of Fluids Engineering, 137(6), 061201. DOI: 10.1115/1.4029608 DOI: https://doi.org/10.1115/1.4029608
Zhang, H. Y., Wang, Z. Y., Xu, W. G. & Dai, L. M. (2015b). Effects of rigid unsubmerged vegetation on flow field structure and turbulent kinetic energy of gradually varied flow. River Research and Applications, 31(9), 1166-1175. DOI: 10.1002/rra.2814 DOI: https://doi.org/10.1002/rra.2814
Zhao, F. & Huai W. X. (2016). Hydrodynamics of discontinuous rigid submerged vegetation patches in open-channel flow. Journal of Hydro-environment Research, 12, 148-160. DOI: 10.1016/j.jher.2016.05.004 DOI: https://doi.org/10.1016/j.jher.2016.05.004
Zhao, H. Q., Yan, J., Yuan, S. Y., Liu, J. F. & Zheng, J. Y. (2019). Effects of submerged vegetation density on turbulent flow characteristics in an open channel. Water, 11, 2154. DOI: 10.3390/w11102154 DOI: https://doi.org/10.3390/w11102154
Zhou, Z. C., Shangguana, Z. P. & Zhao, D. (2006). Modeling vegetation coverage and soil erosion in the Loess Plateau area of China. Ecological Modelling, 198(1-2), 263-268. DOI: 10.1016/j.ecolmodel.2006.04.019 DOI: https://doi.org/10.1016/j.ecolmodel.2006.04.019
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Kourosh Nosrati, Ali Rahm Rahimpour, Hossein Afzalimehr, Mohammad Nazari-Sharabian, Moses Karakouzian. (2024). Experimental Investigation of Anisotropic Invariants in Streams with Rigid Vegetation and 3D Bedforms. Fluids, 9(12), p.282. https://doi.org/10.3390/fluids9120282.
2. Xiaonan Tang, Prateek K. Singh, Yutong Guan, Ming Li. (2024). Flow through layered vegetation in open channel flows: effect on velocity and discharge distribution. Environmental Fluid Mechanics, 24(4), p.611. https://doi.org/10.1007/s10652-023-09960-y.
3. Sanaz Sediqi, Jueyi Sui, Guowei Li. (2025). Effect of submerged vegetation on hydraulic resistance of ice-covered flows. International Journal of Sediment Research, 40(2), p.348. https://doi.org/10.1016/j.ijsrc.2024.09.008.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2022 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.