Published

2022-05-11

Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel

Efectos de la altura de la vegetación y de la inmersión relativa en vegetación rígida en la corriente de un canal abierto

DOI:

https://doi.org/10.15446/esrj.v26n1.76187

Keywords:

Rigid submerged vegetation, Vegetation height, Relative submergence, Flow structure, Water depth, Flow velocity distribution (en)
vegetación sumergida rígida; Altura de la vegetación; inmersión relativa; Flujo Estructura; Profundidad del agua; Distribución de la velocidad (es)

Downloads

Authors

  • Zhongyu Wang Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University https://orcid.org/0000-0002-1342-3024
  • Huayong Zhang Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University https://orcid.org/0000-0001-8898-8567
  • Xing He Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University
  • Qi Jiang National Major Science and Technology Program Management Office for Water Pollution Control and Treatment
  • Weigang Xu Institute of Wetland Research, Chinese Academy of Forestry
  • Wang Tian Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University
In this research, the vegetation height and a concept of relative submergence are adapted to experimentally investigate the effects of rigid submerged vegetation on flow structure. The results reveal that the relative submergence presents decreasing trend along the submerged vegetation section and the average relative submergence follows a power functional decreasing relationship regarding to the increase of vegetation height. After the exit of vegetation block, the water depths for the vegetated cases resume to the level and trend of the case without vegetation. The differences between the maximum and minimum water depths for the submerged cases follow a linear relationship with vegetation height and a negative power functional relationship with the average relative submergence, with which, the raised water depths due to rigid submerged vegetation can be predicted under similar hydraulic and vegetation conditions to the present research. Due to the retardance of vegetation block, the differences between the maximum and minimum flow velocities increase with the vegetation height as the maximum values change slightly and the minimum values decrease continuously. The findings of the research may improve the comprehensive understandings of open channel hydraulic behaviors affected by rigid submerged vegetation and give some guidance to the river ecological restorations.

La vegetación en las corrientes de un río natural interactúa con el flujo de agua de una manera no lineal. En esta investigación se estudia la altura de la vegetación y un concepto de inmersión relativa para investigar experimentalmente los efectos de la vegetación rígida sumergida en una estructura de flujo. Los resultados revelan que las submersiones relativas decrecen a lo largo de la sección de vegetación sumergida. Desde la perspectiva del caso promedio, la relación lineal entre la profundidad del agua y la altura de la vegetación demuestra una tendencia a la baja del promedio de la inmersión relativa a medida que se incrementa la altura de la vegetación. Las diferencias entre la profundidad mínima y máxima del agua en los casos de inmersión puede describirse a través de una función lineal positiva con la altura de la vegetación y una función de poder negativa con inmersión relativa, por lo que el incremento del nivel del agua ocasionado por el bloqueo de la vegetación se puede predecir con condiciones hidráulicas similares. Los hallazgos de la investigación, especialmente la introducción de la inmersión relativa y su relación funcional con la alternación de la profundidad del agua inducida por la vegetación sumergida, pueden mejorar los amplios conocimientos de los comportamientos hidráulicos en un canal abierto con vegetación y pueden ofrecer información para la restauración ecológica de ríos.

References

Ben Meftah, M. & Mossa, M. (2013). Prediction of channel flow characteristics through square arrays of emergent cylinders. Physics of Fluids, 25(4), 13-25. DOI: 10.1063/1.4802047 DOI: https://doi.org/10.1063/1.4802047

Callow J. N. (2012). Potential for vegetation-based river management in dryland, saline catchments. River Research and Applications, 28(8), 1072-1092. DOI: 10.1002/rra.1506 DOI: https://doi.org/10.1002/rra.1506

Chanson H. (2004). The hydraulics of open channel flows: an introduction (second edition). Elsevier Butterworth-Heinemann, Oxford, United Kingdom, 585 pp. DOI: 10.1016/B978-0-7506-5978-9.X5000-4 DOI: https://doi.org/10.1016/B978-075066165-2.50033-3

Chauhan M. & Gopal B. (2005). Vegetation structure and dynamics of a floodplain wetland along a subtropical regulated river. River Research and Applications, 21(5), 513-534. DOI: 10.1002/rra.821 DOI: https://doi.org/10.1002/rra.821

Chow, V. T. (1959). Open-channel hydraulics. Mc-Graw Hill, New York, United States, 680 pp.

Coon W. F. (1998). Estimation of roughness coefficients for natural stream channels with vegetated banks. US Geological Survey Water-Supply Paper, Reston, United States, 133 pp. DOI: 10.3133/wsp2441 DOI: https://doi.org/10.3133/wsp2441

Fathi-Moghadam, M., Kashefipour, M., Ebrahimi, N. & Emamgholizadeh, S. (2011). Physical and numerical modeling of submerged vegetation roughness in rivers and flood plains. Journal of Hydrologic Engineering, 16(11), 858-864. DOI: 10.1061/(ASCE)HE.1943-5584.0000381 DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000381

Fathi-Maghadam, M. & Kouwen, N. (1997). Nonrigid, nonsubmerged, vegetative roughness on floodplains. Journal of Hydraulic Engineering, 123(1), 51-57. DOI: 10.1061/(ASCE)0733-9429(1997)123:1(51) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1997)123:1(51)

Friberg, N., Harrison, L., O'Hare, M. & Tullos, D. Restoring rivers and floodplains: hydrology and sediments as drivers of change. Ecohydrology, 10(5), e1884. DOI: 10.1002/eco.1884 DOI: https://doi.org/10.1002/eco.1884

Green, J. C. (2005). Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes. River Research Applications, 21(6), 671-686. DOI: 10.1002/rra.854 DOI: https://doi.org/10.1002/rra.854

Gualtieri, P., Felice, S. D., Pasquino, V. & Doria, G. P. (2018). Use of conventional flow resistance equations and a model for the Nikuradse roughness in vegetated flows at high submergence. Journal of Hydrology and Hydromechanics, 66(1), 107-120. DOI: 10.1515/johh-2017-0028 DOI: https://doi.org/10.1515/johh-2017-0028

Huai, W. X., Zeng, Y. H., Xu, Z. G. & Yang, Z. H. (2009). Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation. Advances in Water Resources, 32(4), 487-492. DOI: 10.1016/j.advwatres.2008.11.014 DOI: https://doi.org/10.1016/j.advwatres.2008.11.014

Järvelä, J. (2005). Effect of submerged flexible vegetation on flow structure and resistance. Journal Hydrology, 307(1-4), 233-241. DOI: 10.1016/j.jhydrol.2004.10.013 DOI: https://doi.org/10.1016/j.jhydrol.2004.10.013

Jing, Y., Zhang, H. Y., Wang, Z. Y., Xu, W. G., Ji, C. M. & Zhang H. (2010). The change of relative turbulence intensity within the reed population, Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition, Vancouver, Canada, November, 8, 397-401. DOI: 10.1115/IMECE2010-40783 DOI: https://doi.org/10.1115/IMECE2010-40783

Kouwen, N. & Fathi-Moghadam, M. (2000). Friction factors for coniferous trees along rivers. Journal of Hydraulic Engineering, 126(10), 732-740. DOI: 10.1061/(ASCE)0733-9429(2000)126:10(732) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732)

Lama, G. F. C., Crimaldi, M., Pasquino, V., Padulano, R. & Chirico, G. B. (2021). Bulk drag predictions of riparian Arundo donax stands through UAV-acquired multispectral images. Water, 13(10), 1333. DOI: 10.3390/w13101333 DOI: https://doi.org/10.3390/w13101333

Liu, D., Valyrakis, M. & Williams, R. (2017). Flow hydrodynamics across open channel flows with riparian zones: implications for riverbank stability. Water, 9(9), 720. DOI: 10.3390/w9090720 DOI: https://doi.org/10.3390/w9090720

Manes, C., Pokrajac D. & McEwan I. (2007). Double-averaged open-channel flows with small relative submergence. Journal of Hydraulic Engineering, 133(8), 896-904. DOI: 10.1061/(ASCE)0733-9429(2007)133:8(896) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(896)

McBride, M., Hession, W. C., Rizzo, D. M. & Thompson, D. M. (2007). The influence of riparian vegetation on near-bank turbulence: a flume experiment. Earth Surface Processes and Landforms, 32(13), 2019-2037. DOI: 10.1002/esp.1513 DOI: https://doi.org/10.1002/esp.1513

Musleh, F. A. & Cruise, J. F. (2006). Functional relationships of resistance in wide flood plains with rigid unsubmerged vegetation. Journal Hydraulic Engineering, 132(2), 163-171. DOI: 10.1061/(ASCE)0733-9429(2006)132:2(163) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(163)

Najafabadi, E. F., Afzalimehr, H. & Sui, J. Y. (2015). Turbulence characteristics of favorable pressure gradient flows in gravel-bed channel with vegetated walls. Journal of Hydrology and Hydromechanics, 63(2), 154-163. DOI: 10.1515/johh-2015-0019 DOI: https://doi.org/10.1515/johh-2015-0019

Nepf, H. M. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479-489. DOI: 10.1029/1998WR900069 DOI: https://doi.org/10.1029/1998WR900069

Nepf, H. M. (2012). Flow and transport in regions with aquatic vegetation. Annual Review of Fluid Mechanics, 44, 123-142. DOI: 10.1146/annurev-fluid-120710-101048 DOI: https://doi.org/10.1146/annurev-fluid-120710-101048

Nezu, I. & Sanjou, M. (2008). Turbulence structure and coherent motion in vegetated canopy open-channel flows. Journal of Hydro-environment Research, 2(2), 62-90. DOI: 10.2208/journalam.10.795 DOI: https://doi.org/10.1016/j.jher.2008.05.003

Nikora, N., Nikora, V. & O’Donoghue, T. (2013). Velocity profiles in vegetated open-channel flows: combined effects of multiple mechanisms. Journal of Hydraulic Engineering, 139(10), 1021-1032. DOI: 10.1061/(ASCE)HY.1943-7900.0000779 DOI: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000779

O'Briain, R., Shephard, S. & Coghlan, B. (2017). River reaches with impaired riparian tree cover and channel morphology have reduced thermal resilience. Ecohydrology, 10(8), e1890. DOI: 10.1002/eco.1890 DOI: https://doi.org/10.1002/eco.1890

Okamoto, T., Nezu, I. & Ikeda, H. (2014). Vertical mass and momentum transport in open-channel flows with submerged vegetations. Journal of Hydro-environment Research, 6(4), 287-297. DOI: 10.1016/j.jher.2012.03.002 DOI: https://doi.org/10.1016/j.jher.2012.03.002

Pasquino, V., Gualtieri, P. & Doria, G.P. (2016). On evaluating flow resistance of rigid vegetation using classic hydraulic roughness at high submergence levels: An experimental work. In: Rowiński, P. & Marion A. (Editor). Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces, Springer, Cham, Switzerland, 269-277. DOI: 10.1007/978-3-319-27750-9_22 DOI: https://doi.org/10.1007/978-3-319-27750-9_22

Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. (2004). The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorology, 111, 565–587. DOI: 10.1023/B:BOUN.0000016576.05621.73 DOI: https://doi.org/10.1023/B:BOUN.0000016576.05621.73

Pujol, D., Colomer, J., Serra, T. & Casamitjana, X. (2010). Effect of submerged aquatic vegetation on turbulence induced by an oscillating grid. Continental Shelf Research, 30(9), 1019-1029. DOI: 10.1016/j.csr.2010.02.014 DOI: https://doi.org/10.1016/j.csr.2010.02.014

Qian, F., Cheng, D. B., Ding W. F., Huang J. S. & Liu J. J. (2016). Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China. Journal of Hydrology and Hydromechanics, 64(3), 237-245. DOI: 10.1515/johh-2016-0029 DOI: https://doi.org/10.1515/johh-2016-0029

Rhee, D. S., Woo, H., Kwon, B. A. & Ahn, H. K. (2008). Hydraulic resistance of some selected vegetation in open channel flows. River Research and Applications, 24(5), 673-687. DOI: 10.1002/rra.1143 DOI: https://doi.org/10.1002/rra.1143

Sandercock, P. J. & Hooke, J. M. (2010). Assessment of vegetation effects on hydraulics and of feedbacks on plant survival and zonation in ephemeral channels. Hydrological Processes, 24(6), 695-713. DOI: 10.1002/hyp.7508 DOI: https://doi.org/10.1002/hyp.7508

Stone, B. M. & Shen, H. T. (2002). Hydraulic resistance of flow in channels with cylindrical roughness. Journal of Hydraulic Engineering, 128(5), 500-506. DOI: 10.1061/(ASCE)0733-9429(2002)128:5(500) DOI: https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)

Temmerman, S., Bouma, T. J., Govers, G., Wang, Z. B., De Vries, M. B. & Herman, P. M. J. (2005). Impact of vegetation on flow routing and sedimentation patterns: three-dimensional modeling for a tidal marsh. Journal of Geophysical Research, 110(F4), F04019. DOI: 10.1029/2005JF000301 DOI: https://doi.org/10.1029/2005JF000301

Thorne, C. R. (1990). Vegetation and erosion: Processes and environments. Wiley, Chichester, United Kingdom, 518 pp.

Velasco, D., Bateman, A., Redondo, J. M. & Demedina, V. (2003). An open channel flow experimental and theoretical study of resistance and turbulent characterization over flexible vegetated linings. Flow, Turbulence and Combustion, 70, 69-88. DOI: 10.1023/B:APPL.0000004932.81261.40 DOI: https://doi.org/10.1023/B:APPL.0000004932.81261.40

White, B. L. & Nepf, H. M. (2003). Scalar transport in random cylinder arrays at moderate Reynolds number. Journal of Fluid Mechanics, 487, 43-79. DOI: 10.1017/S0022112003004579 DOI: https://doi.org/10.1017/S0022112003004579

Wilson, C. A. M. E. (2007). Flow resistance models for flexible submerged vegetation. Journal of Hydrology, 342(3-4), 213-222. DOI: 10.1016/j.jhydrol.2007.04.022 DOI: https://doi.org/10.1016/j.jhydrol.2007.04.022

Wu, F. C., Shen, H. W. & Chou, Y. J. (1999). Variation of roughness coefficients for unsubmerged and submerged vegetation. Journal of Hydraulic Engineering, 125(9), 934-942. DOI: 10.1061/(ASCE)0733-9429(1999)125:9(934) DOI: https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(934)

Yagci, O., Tschiesche, U. & Kabdasli, M. S. (2010). The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics. Advances in Water Resources, 33(5), 601-614. DOI: 10.1016/j.advwatres.2010.03.008 DOI: https://doi.org/10.1016/j.advwatres.2010.03.008

Yokojima, S., Kawahara, Y. & Yamamoto, T. (2015). Impacts of vegetation configuration on flow structure and resistance in a rectangular open channel. Journal of Hydro-environment Research, 9(2), 295-303. DOI: 10.1016/j.jher.2014.07.008 DOI: https://doi.org/10.1016/j.jher.2014.07.008

Zhang, G. H., Liu, G. B., Yi, L. & Zhang, P. C. (2014). Effects of patterned Artemisia capillaris on overland flow resistance under varied rainfall intensities in the Loess Plateau of China. Journal of Hydrology and Hydromechanics, 62(4), 334-342. DOI: 10.2478/johh-2014-0035 DOI: https://doi.org/10.2478/johh-2014-0035

Zhang, H. Y., Wang, Z. Y., Dai, L. M. & Xu, W. G. (2015a). Influence of vegetation on turbulence characteristics and Reynolds shear stress in partly vegetated channel. Journal of Fluids Engineering, 137(6), 061201. DOI: 10.1115/1.4029608 DOI: https://doi.org/10.1115/1.4029608

Zhang, H. Y., Wang, Z. Y., Xu, W. G. & Dai, L. M. (2015b). Effects of rigid unsubmerged vegetation on flow field structure and turbulent kinetic energy of gradually varied flow. River Research and Applications, 31(9), 1166-1175. DOI: 10.1002/rra.2814 DOI: https://doi.org/10.1002/rra.2814

Zhao, F. & Huai W. X. (2016). Hydrodynamics of discontinuous rigid submerged vegetation patches in open-channel flow. Journal of Hydro-environment Research, 12, 148-160. DOI: 10.1016/j.jher.2016.05.004 DOI: https://doi.org/10.1016/j.jher.2016.05.004

Zhao, H. Q., Yan, J., Yuan, S. Y., Liu, J. F. & Zheng, J. Y. (2019). Effects of submerged vegetation density on turbulent flow characteristics in an open channel. Water, 11, 2154. DOI: 10.3390/w11102154 DOI: https://doi.org/10.3390/w11102154

Zhou, Z. C., Shangguana, Z. P. & Zhao, D. (2006). Modeling vegetation coverage and soil erosion in the Loess Plateau area of China. Ecological Modelling, 198(1-2), 263-268. DOI: 10.1016/j.ecolmodel.2006.04.019 DOI: https://doi.org/10.1016/j.ecolmodel.2006.04.019

How to Cite

APA

Wang, Z., Zhang, H., He, X., Jiang, Q., Xu, W. and Tian, W. (2022). Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel. Earth Sciences Research Journal, 26(1), 39–46. https://doi.org/10.15446/esrj.v26n1.76187

ACM

[1]
Wang, Z., Zhang, H., He, X., Jiang, Q., Xu, W. and Tian, W. 2022. Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel. Earth Sciences Research Journal. 26, 1 (May 2022), 39–46. DOI:https://doi.org/10.15446/esrj.v26n1.76187.

ACS

(1)
Wang, Z.; Zhang, H.; He, X.; Jiang, Q.; Xu, W.; Tian, W. Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel. Earth sci. res. j. 2022, 26, 39-46.

ABNT

WANG, Z.; ZHANG, H.; HE, X.; JIANG, Q.; XU, W.; TIAN, W. Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel. Earth Sciences Research Journal, [S. l.], v. 26, n. 1, p. 39–46, 2022. DOI: 10.15446/esrj.v26n1.76187. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/76187. Acesso em: 28 mar. 2025.

Chicago

Wang, Zhongyu, Huayong Zhang, Xing He, Qi Jiang, Weigang Xu, and Wang Tian. 2022. “Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel”. Earth Sciences Research Journal 26 (1):39-46. https://doi.org/10.15446/esrj.v26n1.76187.

Harvard

Wang, Z., Zhang, H., He, X., Jiang, Q., Xu, W. and Tian, W. (2022) “Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel”, Earth Sciences Research Journal, 26(1), pp. 39–46. doi: 10.15446/esrj.v26n1.76187.

IEEE

[1]
Z. Wang, H. Zhang, X. He, Q. Jiang, W. Xu, and W. Tian, “Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel”, Earth sci. res. j., vol. 26, no. 1, pp. 39–46, May 2022.

MLA

Wang, Z., H. Zhang, X. He, Q. Jiang, W. Xu, and W. Tian. “Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel”. Earth Sciences Research Journal, vol. 26, no. 1, May 2022, pp. 39-46, doi:10.15446/esrj.v26n1.76187.

Turabian

Wang, Zhongyu, Huayong Zhang, Xing He, Qi Jiang, Weigang Xu, and Wang Tian. “Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel”. Earth Sciences Research Journal 26, no. 1 (May 11, 2022): 39–46. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/76187.

Vancouver

1.
Wang Z, Zhang H, He X, Jiang Q, Xu W, Tian W. Effects of vegetation height and relative submergence for rigid submerged vegetation on flow structure in open channel. Earth sci. res. j. [Internet]. 2022 May 11 [cited 2025 Mar. 28];26(1):39-46. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/76187

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Kourosh Nosrati, Ali Rahm Rahimpour, Hossein Afzalimehr, Mohammad Nazari-Sharabian, Moses Karakouzian. (2024). Experimental Investigation of Anisotropic Invariants in Streams with Rigid Vegetation and 3D Bedforms. Fluids, 9(12), p.282. https://doi.org/10.3390/fluids9120282.

2. Xiaonan Tang, Prateek K. Singh, Yutong Guan, Ming Li. (2024). Flow through layered vegetation in open channel flows: effect on velocity and discharge distribution. Environmental Fluid Mechanics, 24(4), p.611. https://doi.org/10.1007/s10652-023-09960-y.

3. Sanaz Sediqi, Jueyi Sui, Guowei Li. (2025). Effect of submerged vegetation on hydraulic resistance of ice-covered flows. International Journal of Sediment Research, 40(2), p.348. https://doi.org/10.1016/j.ijsrc.2024.09.008.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 3
  • Captures
  • Mendeley - Readers: 3

Article abstract page views

289

Downloads