Published

2018-10-01

High-precision Joint 2D Traveltime Calculation for Seismic Processing

Cálculo de alta precisión del tiempo de viaje integrado bidimensional en procesamiento sísmico

DOI:

https://doi.org/10.15446/esrj.v22n4.77362

Keywords:

Seismic Imaging, Traveltime calculation, Fast Marching Method, Wavefront Construction, Seismic Processing (en)
Imágenes sísmicas, cálculo del tiempo de viaje, Método de Marcha Rápida, Construcción de Frente de Onda, procesamiento sísmico (es)

Downloads

Authors

  • Hui Sun MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu, 610031, China
  • Fanchang Meng Institute of Geology and Geophysics, the Chinese Academy of Sciences, Beijing, 100029, China
  • Zhihou Zhang Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
  • Cheng Gao School of Mines, Inner Mongolia University of Technology, Huhhot, 010051, China
  • Mingchen Liu College for Geoexploration Science Technology, Jilin University, Changchun, 130026, China

Fast Marching Method (FMM) boasts high calculation efficiency and strong adaptability and stability while being applied to seismic traveltime. However, when it is applied to the largescale model, the calculation precision of FMM is insufficient. FMM has poor calculation precision near the source, which is an essential reason for the low accuracy of the whole algorithm. This paper puts forward a joint traveltime calculation method to address the problem. Wavefront Construction (WFC) with a relatively high calculation accuracy rather than FMM is adopted for calculation of the grid nodes’ traveltime near the source. After that, FMM is used to calculate the seismic traveltime in the remaining area. Joint traveltime calculation method greatly improves the calculation accuracy of the source’s surrounding area and the calculation accuracy of FMM. According to the new method, FMM is still adopted for the calculation of most grid nodes in the model, so the high calculation efficiency of FMM is maintained. Multiple numerical models are utilized to verify the above conclusions in the paper. 

Se presupone que el método de la marcha rápida (FMM, del inglés Fast March Method) tiene una alta capacidad de calcular y una fuerte adaptabilidad y estabilidad cuando se aplica en el tiempo de viaje sísmico. Sin embargo, cuando se aplica a un modelo de gran escala su precisión de cálculo  es insuficiente. El FMM tiene una baja precisión de cálculo cerca de la fuente, lo que explica su poca exactitud en todo el algoritmo. En este artículo se presenta un método de cálculo común de tiempo de viaje para acercarse al problema. La Construcción de Frente de Onda (WFC, del inglés Wavefront Construction), con una mejor precisión que el FMM, se utilizó para el cálculo de la cuadrícula de nodos del tiempo de viaje cerca de la fuente. Después de esto, el FMM se utilizó para calcular el tiempo de viaje sísmico en el área restante. El método conjunto aumentó considerablemente la exactitud en el cálculo del área alrededor de la fuente y la exactitud en el cálculo del mecanismo FMM. De acuerdo con este nuevo método, el FMM se utiliza en el cálculo de la cuadrícula de nodos, con lo que se mantiene su alta eficiencia de cálculo. Varios modelos numéricos se utilizaron para verificar las conclusiones de este trabajo.

References

Alkhalifah, T., & Fomel, S. (2001). Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates. Geophysical Prospecting, 49(2), 165-178.

Asakawa, E., & Kawanaka, T. (1993). Seismic ray tracing using linear traveltime interpolation. Geophysical prospecting, 1993, 41(1): 99-111.

Bai, C., Greenhalgh, S., & Zhou, B. (2007). 3D ray tracing using a modified shortest-path method. Geophysics, 72(4), T27-T36.

Bai, C., Li, X., Tang, X (2011). Seismic wavefront evolution of multiply reflected, transmitted, and converted phases in 2D/3D triangular cell model. Journal of Seismology, 15(4), 637.

Cardarelli, E., & Cerreto, A. (2002). Ray tracing in elliptical anisotropic media using the linear traveltime interpolation (LTI) method applied to traveltime seismic tomography. Geophysical Prospecting, 50(1), 55-72.

Chambers, K., & Kendall, J. M. (2008). A practical implementation of wave front construction for 3-D isotropic media. Geophysical Journal International, 173(3), 1030-1038.

Coman, R., & Gajewski, D. (2005). Traveltime computation by wavefront‐orientated ray tracing. Geophysical Prospecting, 53(1), 23-36.

Han, F., Sun, J., & Sun, Z. (2009). Positioning of grid points in wave front construction. Applied Geophysics, 6(3), 248.

Hauser, J., Sambridge, M., & Rawlinson, N. (2008). Multiarrival wavefront tracking and its applications. Geochemistry, Geophysics, Geosystems, 2008, 9(11).

Huang, X. & Greenhalgh, S. (2018). Linearized formulations and approximate solutions for the complex eikonal equation in orthorhombic media and applications of complex seismic traveltime. Geophysics, 83(3), C115-C136.

Huang, X., & Sun, H. (2018). Numerical modeling of Gaussian beam propagation and diffraction in inhomogeneous media based on the complex eikonal equation. Acta Geophysica. DOI: 10.1007/s11600-018-0154-x.

Huang, X., Sun, J., & Sun, Z. (2016). Local algorithm for computing complex travel time based on the complex eikonal equation. Physical Review E, 93(4), 043307.

Julian, B. R. (1977). Three-dimensional seismic ray tracing. Journal of Geophysics, 43, 95-113.

Lan, H., & Chen, L. (2018). An upwind fast sweeping scheme for calculating seismic wave first‐arrival travel times for models with an irregular free surface. Geophysical Prospecting, 66(2), 327-341.

Liang, S., Liang, X., & Yang, X. (2016). Development of seismic exploration technologies and its significance for the discovery of gas field clusters in the buried anticlines, Kuqa Foreland Basin. China Petroleum Exploration, 21(6), 98-109.

Liu, S., Wang, H., & Yang, Q. (2014). Traveltime computation and imaging from rugged topography in 3D TTI media. Journal of Geophysics and Engineering, 11(1), 015003.

Ma, T., & Zhang, Z. (2014). Calculating Ray Paths for First‐Arrival Travel Times Using a Topography‐Dependent Eikonal Equation Solver. Bulletin of the Seismological Society of America, 104(3), 1501-1517.

Moser, T. J. (1991). Shortest path calculation of seismic rays. Geophysics, 56(1), 59-67.

Nie, J., & Yang, H. (2003). Quadratic/linear travel time interpolation of seismic ray-tracing. Journal of Tsinghua University, 43(11), 1495-1498.

Rawlinson, N., & Sambridge, M. (2004). Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophysical Journal International, 156(3), 631-647.

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences, 93(4), 1591-1595.

Sethian, J. A., & Popovici, M. A. (1999). Three dimensional traveltimes computation using the Fast Marching Method. Geophysics, 64(2), 516-523.

Sun, Y., & Fomel, S. (1998). Fast-marching eikonal solver in the tetragonal coordinates. Stanford Exploration Project Report, 97, 241-250.

Sun, Z. Q., Sun, J. G., & Han, F. X. (2009). Traveltimes computation using linear interpolation and narrow band technique under complex topographical conditions. Chinese Journal of Geophysics, 52(11), 2846-2853.

Sun, Z., Sun, J., & Han, F. (2010). Traveltime Computation Using Fast Marching Method Under Complex Topographical Conditions. Chinese Journal of Computational Physics, 27(2), 281-286.

Sun, J., Sun, Z., & Han, F. (2011). A finite difference scheme for solving the eikonal equation including surface topography. Geophysics, 76(4), T53-T63.

Sun, Z., Sun, J. & Han, F. (2012). Traveltime computation using the upwind finite difference method with nonumiform grid spacing in a 3D undulating surface condition. Chinese Journal of Geophysics, 55(7), 2441-2449.

Sun, H., Sun, J., & Han, F. (2016). Research into the effects of seawater velocity variation on migration imaging in deep-water geology. Earth Sciences Research Journal, 20(3), H1-H7.

Sun, Z., Sun, J., & Yue, Y. (2016). Ray tracing using GMM-ULTI method in the random media with complexity topography. Chinese Journal of Geophysics, 59(7), 2615-2627.

Sun, H., Sun, J. G., & Han, F. X. (2017). Synthetic analysis of model smoothing’s influence on ray path, traveltime and migration imaging. Applied ecology and environmental research, 2017, 15(3), 443-452.

Sun, Z., Sun, J., & Wang, X. (2017). Computation of multiple seismic traveltime in mountainous areas with complex 3D conditions using the multistage group marching upwind hybrid method. Chinese Journal of Geophysics, 60(5), 1861-1873.

Sun, H., Zhang, Z., & Hu, G. (2018). Kirchhoff Beam Migration Based on Compressive Sensing. IEEE Access, 6(1), 26520-26529.

Sussman, M., Smereka, P., & Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational physics, 114(1), 146-159.

Vidale, J. (1988). Finite-difference calculation of travel times. Bulletin of the Seismological Society of America, 78(6), 2062-2076.

Vinje, V., Iversen, E., & Gjøystdal, H. (1993). Traveltime and amplitude estimation using wavefront construction. Geophysics, 58(8), 1157-1166.

Vinje, V. (1997). A new interpolation criterion for controlling accuracy in wavefront construction. 1997 SEG Annual Meeting. Society of Exploration Geophysicists.

Wang, X., Bradley, K. E, & Wei, S. (2018). Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling. Earth and Planetary Science Letters, 483, 29-38.

Wang, X., Chen, Q. F., & Li, J. (2016). Seismic Sensor Misorientation Measurement Using P‐Wave Particle Motion: An Application to the NECsaids Array. Seismological Research Letters, 87(4), 901-911.

Wang, X., Li, J., & Chen, Q. F. (2017). Topography of the 410 km and 660 km discontinuities beneath the Japan Sea and adjacent regions by analysis of multiple‐ScS waves. Journal of Geophysical Research: Solid Earth, 122(2), 1264-1283.

Wang, X., Wei, S., & Wu, W. (2017). Double-ramp on the Main Himalayan Thrust revealed by broadband waveform modeling of the 2015 Gorkha earthquake sequence. Earth and Planetary Science Letters, 473, 83-93.

Yang, J., & Zhu, H. (2017). A practical data-driven optimization strategy for Gaussian beam migration. Geophysics, 83(1), S81-S92.

Yang, J., Zhu, H., McMechan, G. & Yue, Y. (2018). Time-domain least-squares migration using the Gaussian beam summation method. Geophysical Journal International, 214(1), 548-572. DOI: https://doi.org/10.1093/gji/ggy142

How to Cite

APA

Sun, H., Meng, F., Zhang, Z., Gao, C. and Liu, M. (2018). High-precision Joint 2D Traveltime Calculation for Seismic Processing. Earth Sciences Research Journal, 22(4), 327–334. https://doi.org/10.15446/esrj.v22n4.77362

ACM

[1]
Sun, H., Meng, F., Zhang, Z., Gao, C. and Liu, M. 2018. High-precision Joint 2D Traveltime Calculation for Seismic Processing. Earth Sciences Research Journal. 22, 4 (Oct. 2018), 327–334. DOI:https://doi.org/10.15446/esrj.v22n4.77362.

ACS

(1)
Sun, H.; Meng, F.; Zhang, Z.; Gao, C.; Liu, M. High-precision Joint 2D Traveltime Calculation for Seismic Processing. Earth sci. res. j. 2018, 22, 327-334.

ABNT

SUN, H.; MENG, F.; ZHANG, Z.; GAO, C.; LIU, M. High-precision Joint 2D Traveltime Calculation for Seismic Processing. Earth Sciences Research Journal, [S. l.], v. 22, n. 4, p. 327–334, 2018. DOI: 10.15446/esrj.v22n4.77362. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/77362. Acesso em: 28 jul. 2024.

Chicago

Sun, Hui, Fanchang Meng, Zhihou Zhang, Cheng Gao, and Mingchen Liu. 2018. “High-precision Joint 2D Traveltime Calculation for Seismic Processing”. Earth Sciences Research Journal 22 (4):327-34. https://doi.org/10.15446/esrj.v22n4.77362.

Harvard

Sun, H., Meng, F., Zhang, Z., Gao, C. and Liu, M. (2018) “High-precision Joint 2D Traveltime Calculation for Seismic Processing”, Earth Sciences Research Journal, 22(4), pp. 327–334. doi: 10.15446/esrj.v22n4.77362.

IEEE

[1]
H. Sun, F. Meng, Z. Zhang, C. Gao, and M. Liu, “High-precision Joint 2D Traveltime Calculation for Seismic Processing”, Earth sci. res. j., vol. 22, no. 4, pp. 327–334, Oct. 2018.

MLA

Sun, H., F. Meng, Z. Zhang, C. Gao, and M. Liu. “High-precision Joint 2D Traveltime Calculation for Seismic Processing”. Earth Sciences Research Journal, vol. 22, no. 4, Oct. 2018, pp. 327-34, doi:10.15446/esrj.v22n4.77362.

Turabian

Sun, Hui, Fanchang Meng, Zhihou Zhang, Cheng Gao, and Mingchen Liu. “High-precision Joint 2D Traveltime Calculation for Seismic Processing”. Earth Sciences Research Journal 22, no. 4 (October 1, 2018): 327–334. Accessed July 28, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/77362.

Vancouver

1.
Sun H, Meng F, Zhang Z, Gao C, Liu M. High-precision Joint 2D Traveltime Calculation for Seismic Processing. Earth sci. res. j. [Internet]. 2018 Oct. 1 [cited 2024 Jul. 28];22(4):327-34. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/77362

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Hui Sun, Cheng Gao, Zhihou Zhang, Xiaolong Liao, Xuyu Wang, Junjie Yang. (2020). High-Resolution Anisotropic Prestack Kirchhoff Dynamic Focused Beam Migration. IEEE Sensors Journal, 20(20), p.11753. https://doi.org/10.1109/JSEN.2019.2933200.

Dimensions

PlumX

Article abstract page views

302

Downloads

Download data is not yet available.