Published

2020-10-12

Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo

Características de tendencia de días lluviosos y evaporación en una región tropical boscosa del este de Malasia, en la isla de Borneo

DOI:

https://doi.org/10.15446/esrj.v24n3.77670

Keywords:

Linear regression, Mann Kendall, Sen’s slope, Rainy days, Evaporation (en)
Modelo de regresión lineal, técnica de estimación de inclinación, variables climáticas, isla de Borneo (es)

Downloads

Authors

  • Ninu Krishna MV Department of Applied GeologyFaculty of Engineering and ScienceCurtin University MalaysiaCDT 250, 98009 Miri, Sarawak, Malaysia
  • Prasanna MV Department of Applied GeologyFaculty of Engineering and ScienceCurtin University MalaysiaCDT 250, 98009 Miri, Sarawak, Malaysia
  • Vijith H Department of Applied GeologyFaculty of Engineering and ScienceCurtin University MalaysiaCDT 250, 98009 Miri, Sarawak, Malaysia

Impact of climate change over the hydrological system in a region can be identified through statistical characterization of hydrometerological parameters such as rainfall, temperature, humidity and evaporation. In order to understand the influence of climate change, statistical trend characteristics of rainy days, non-rainy days and evaporation rate in the Limbang River Basin (LRB) in Sarawak, Malaysia, Northern Borneo was assessed in the present research. Annual rainfall and monthly evaporation data, over a period of 46 years, (1970 - 2015) corresponding to three rain gauging stations, the Limbang DID, Ukong and Long Napir were used in the research. Linear regression model, Mann Kendall and Sen’s slope estimator techniques were applied to detect the statistical trends in rainy days and evaporation. A statistically significant increasing trend in annual rainy days was found at all the stations. Non-rainy days showed a statistically significant decreasing trend at Limbang DID and Ukong. Monthly evaporation rates showed an overall increasing trend and the greatest increasing trend in evaporation was observed in September (2.55 mm/year) for the Limbang DID and in December (2.61 mm/year) for Ukong. Evaporation measured at the Ukong station also showed a non-significant decrease during June and September. A comparison of the evaporation controlling meteorological variables such as rainfall, temperature and relative humidity indicates inter-influence at various strengths. Along with local precipitation characteristics, wind and fluctuation of atmospheric temperature over the region plays a vital role in increased rate of evaporation from the region. Overall, the analysis identified a statistically significant increasing trend in rainy days and evaporation in the LRB. The results of the present research can be used as critical planning data for micro and macro hydroelectric projects in the river basin.

El impacto del cambio climático en los sistemas hidrológicos de una región pueden identificarse a través de la caracterización estadística de parámetros hidrometeorológicos como la lluvia, la temperatura, la húmedad y la evaporación. Para entender la influencia del cambio climático este estudio evalúa las tendencias estadísticas en los días lluviosos, en los días no lluviosos y en la tasa de evaporación en la cuenca del Río Limbang, en Sarawak, Malasia, al norte de la isla de Borneo. Para la investigación se utlizó la pluviosidad anual y la información mensual de evaporación en un período de 46 años (1970-2015) para tres estaciones pluviométricas: Limbang DID, Ukong y Long Napir. El modelo de regresión lineal y las técnicas de estimación de inclinación de Mann Kendall y Sen se aplicaron para detectar las tendencias estadísticas en días lluviosos y de evaporación. Para todas las estaciones se encontró un incremento en la tendencia anual de días lluviosos. Los días no lluviosos mostraron una baja estadística significativa en las estaciones de Limbang DID y de Ukong. Los índices mensuales de evaporación mostraron mostraron un incremento generalizado, mientras que la mayor tendencia de incremento se observó en los meses de septiembre (2.55 mm/año) para la estación Limbang DID, y para Ukong en los meses de diciembre (2.61 mm/año). La evaporación medida en la estación de Ukong también muestra una baja no significativa para junio y septiembre. Una comparación de la evaporación y del control de variables meteorológicas como la pluviosidad, la temperatura y la húmedad relativa indica una influencia relacionada en varias intensidades. Las características locales de precipitación, de viento y de fluctuación de temperatura atmosférica sobre la región juega un rol importante en el incremento de la evaporación. El análisis identificó una tendencia de incremento estadística significativa en los días lluviosos y de evaporación en la cuenca del Río Limbang. Los resultados del presente estudio pueden usarse como información de planeación determinante para micro y macroproyectos hidroeléctrios en la cuenca del río.

References

Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological applications and modelling. International Journal of Climatology, 33(1), 121-131.

Abtew, W., Obeysekera, J., & Iricanin, N., (2011). Pan evaporation and potential evapotranspiration trends in South Florida. Hydrological Process, 25(6), 958-969. DOI:10.1002/hyp.7887.

Akinsanola, A. A., Ogunjobi, K. O., Ajayi, V. O., Adefisan, E. A., Omotosho, J. A. & Sanogo, S. (2017). Comparison of five gridded precipitation products at climatological scales over West Africa. Meteorology and Atmospheric Physics, 129(6), 669-689.

Allan, R.P., Soden, B. J., John, V. O., Ingram, W., & Good, P. (2010). Current changes in tropical precipitation. Environmental Research Letters, 5(2), 025205.

Asfaw, A., Simane, B., Hassen, A., & Bantider, A., (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41.

Bálint, M., Domisch, S., Engelhardt, C. H. M., Haase, P., Lehrian, S., ... Nowak, C. (2011). Cryptic biodiversity loss linked to global climate change. Nature Climate Change, 1(6), 313.

Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N. S., & Singh, R. (2009). Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrological Engineering, 14(5), 508-515. DOI: 10.1061/(ASCE)HE.1943-5584.0000006.

Behzadi, F., Wasti, A., Rahat, S. H., Tracy, J. N., & Ray, P. A. (2020). Analysis of the climate change signal in Mexico City given disagreeing data sources and scattered projections. Journal of Hydrology: Regional Studies, 27, 100662.

Benestad, R. E. (2013). Association between trends in daily rainfall percentiles and the global mean temperature. Journal of Geophysical Research: atmospheres, 118(19), 10802-10810. DOI: 10.1002/jgrd.50814.

Brito, T. T., Oliveira-Júnior, J. F., Lyra, G. B., Gois, G., & Zeri, M. (2017). Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorology and Atmospheric Physics, 129(5), 469-478.

Burn, D. H., & Hesch, N. M. (2007). Trends in evaporation for the Canadian Prairies. Journal of Hydrology, 336(1-2), 61-73. DOI:10.1016/j.jhydrol.2006.12.011.

Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmospheric Research, 135, 404-414.

CheRos, F., Tosaka, H., Sidek, L.M., & Basri, H., (2016). Homogeneity and trends in long-term rainfall data, Kelantan River Basin, Malaysia. International Journal of River Basin Management, 14(2), 151-163.

Chotamonsak, C., Salathé Jr., E. P., Kreasuwan, J., Chantara, S., & Siriwitayakorn, K. (2011). Projected climate change over Southeast Asia simulated using a WRF regional climate model. Atmospheric Science Letters, 12(2), 213-219.

Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I. (...), Whetton, P. (2007). Regional Climate Projections. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (Eds). In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

Crétaux, J. F., Jelinskia, W., Calmantb, S., Kouraevc, A., Vuglinskid, V., (...), Maisongrande, P. (2011). SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research, 47(9), 1497-1507. DOI: 10.1016/j.asr.2011.01.004

Crisci, A., Gozzini, B., Meneguzzo, F., Pagliara, S., & Maracchi, G. (2002). Extreme rainfall in a changing climate: regional analysis and hydrological implications in Tuscany. Hydrological Processes, 16(6), 1261–1274. doi:10.1002/hyp.1061.

Deni, S. M., Suhaila, J., Zin, W. Z. W., & Jemain, A. A. (2010). Spatial trends of dry spells over Peninsular Malaysia during monsoon seasons. Theoretical and Applied Climatology, 99(3-4), 357.

DID. (2015). The Sarawak hydrological yearbook 2015. Vol 42. Department of Irrigation and Drainage, Sarawak, Malaysia.

DID. (2017). Hydrological station register (revised and updated 2017). Department of Irrigation and Drainage Malaysia. http://h2o.water.gov.my/man_hp1/HP7_2017.pdf (last accessed on 20.06.2018)

Dindang, A., Taat, A. B., Beng, P. E., Alwi, A. B. M., Mandai, A. A., (...) Lah, D. (2013). Statistical and trend analysis of rainfall data in Kuching, Sarawak from 1968 – 2010. Research Publication No. 6/2013, Malaysian Meteorological Department, Kuching.

Diop, L., Ansoumana, B., & Dior., (2016). Spatio temporal Trend Analysis of the Mean Annual Rainfall in Senegal. European Science Journal, 12(12), 231–245. DOI: 10.19044/esj.2016.v12n12p231.

Djaman, K., Koudahe, K., & Ganyo, K. K. (2017). Trend analysis in annual and monthly pan evaporation and pan coefficient in the context of climate change in Togo. Journal of Geoscience and Environment Protection, 5(12), 41-56.

Dumitrescu, A., & Birsan, M. V. (2015). ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Natural Hazards, 78(2), 1045-1063.

Eymen, A., & Köylü, Ü. (2019). Seasonal trend analysis and ARIMA modeling of relative humidity and wind speed time series around Yamula Dam. Meteorology and Atmospheric Physics, 131(3), 601-612.

Frich, P., Alexander, L., Della-Marta, P. M., Gleason, B., Haylock, M., (...), Peterson, T. C. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19(3), 193-212. DOI:10.3354/cr019193.

Fu, G., Charles, S. P., & Yu, J., (2009). A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 97(1), 193 - 214. DOI:10.1007/s10584-009-9579-1

Gavrilov, M. B., Markovic, S., Janc, N., Nikolic, M., Valjarevic, A. D., (...), Bacevic, N. (2018). Assessing average annual air temperature trends using the Mann–Kendall test in Kosovo. Acta Geographica Slovenica, 58(1).

Gebremicael, T. G., Mohamed, Y. A., & Hagos, E. Y., (2017). Temporal and spatial changes of rainfall and streamflow in the upper Tekeze–Atbara river basin, Ethiopia. Hydrology and Earth System Sciences, 21(4), 2127–2142.

Ghumman, A. R., Ghazaw, Y. M., Alodah, A., Rauf, A., Shafiquzzaman, M., & Haider, H. (2020). Identification of Parameters of Evaporation Equations Using an Optimization Technique Based on Pan Evaporation. Water, 12(1), 228.

Gilbert, R. O., (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons.

Hassan, I., Kalin, R. M., White, C. J., & Aladejana, J. A. (2020). Evaluation of daily gridded meteorological datasets over the Niger Delta region of Nigeria and implication to water resources management. Atmospheric and Climate Sciences, 10(1), 21-39.

Helsel, D. R., & Hirsch, R. M., (1992). Statistical Methods in Water Resources. In: Studies in Environmental Science 49, Elsevier: New York, NY, USA.

Hounguè, R., Lawin, A. E., Moumouni, S., & Afouda, A. A., (2019). Change in Climate Extremes and Pan Evaporation Influencing Factors over Ouémé Delta in Bénin. Climate, 7(1), 2.

Hua, T. M., Hui, R. C. Y., & Husen, R., (2013). Trends of rainfall in Sarawak from 1999 to 2008. In: Proceedings of the International Conference on Social Science Research.

IPCC. (2007). Climate change 2007: Synthesis report. Valencia, Spain.

Jana, C., Sharma, G. C., Alam, N. M., Mishra, P. K., Dubey, S. K., & Kumar, R. (2016). Trend analysis of rainfall and rainy days of Acra. International Journal of Agriculture Statistics and Science, 12(1), 263-270.

Jhajharia, D., Yadav, B. K., Maske, S., Chattopadhyay, S., & Kar, A. K. (2012). Identification of trends in rainfall, rainy days and 24h maximum rainfall over subtropical Assam in Northeast India. Comptes Rendus Geoscience 344(1), 1-13. DOI:10.1016/j.crte.2011.11.002.

Karpouzos, D. K., Kavalieratou, S., & Babajimopoulos, C. (2010). Trend analysis of precipitation data in Pieria Region (Greece). European Water, 30, 31-40.

Kendall, M. G. (1948). Rank Correlation Methods. Griffin, London.

Krishnan, M. V. N., Prasanna, M. V., & Vijith, H. (2019a). Statistical analysis of trends in monthly precipitation at the Limbang River Basin, Sarawak (NW Borneo), Malaysia. Meteorology and Atmospheric Physics, 131(4), 883-896.

Krishnan, M. V. N., Prasanna, M. V., & Vijith, H., (2019b). Annual and Seasonal Rainfall Trends in an Equatorial Tropical River Basin in Malaysian Borneo. Environmental Modeling & Assessment, 24(5), 569-584.

Krishnan, M. V. N., Prasanna, M. V., & Vijith, H. (2018). Fluctuations in Monthly and Annual Rainfall Trend in the Limbang River Basin, Malaysia: A Statistical Assessment to Detect the Influence of Climate Change. Journal of Climate Change, 4(2), 15-29.

Kumar, N., Yadav, P. B., Tyagi, A., & Jaswal, A. (2012). Trend and spatial distribution of rainfall & rainy days over Andaman & Nicobar Islands. Natural Hazards, 63, 575–587. DOI:10.1007/s11069-012-0173-x.

Kumar, V., & Jain, S. K., (2010). Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quaternary International, 212(1), 64-69. DOI:10.1016/j.quaint.2009.08.006.

Kumar, V., & Jain, S. K. (2011). Trends in rainfall amount and number of rainy days in river basins of India (1951–2004). Hydrological Research, 42(4), 290-306. DOI:10.2166/nh.2011.067.

Lau, K. M., & Wu, H. T. (2007). Detecting trends in tropical rainfall characteristics, 1979–2003. International Journal of Climatology, 27(8), 979-988.

Liu, Y. J., Chen, J., & Pan, T. (2019). Analysis of changes in reference evapotranspiration, pan evaporation, and actual evapotranspiration and their influencing factors in the North China Plain during 1998–2005. Earth and Space Science, 6(8), 1366-1377.

Livada, I., Synnefa, A., Haddad, S., Paolini, R., Garshasbi, S., (...), Santamouris, M. (2019). Time series analysis of ambient air-temperature during the period 1970–2016 over Sydney, Australia. Science of the Total Environment, 648, 1627-1638.

Madhu, S., Kumar, T. V. L., Barbosa, H., Rao, K. K., & Bhaskar, V. V. (2015). Trend analysis of evapotranspiration and its response to droughts over India. Theoretical and Applied Climatology, 121(1-2), 41-51.

Mandale, V. P., Jedhe, S. H., & Khadtare, M. Y., (2019). Spatio-temporal Trends of Rainfall and Rainy Days in the Marathwada Region of Maharashtra State. Climate Change, 5(17), 55-61.

Mann, H. B., (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., (...), Yee, D. (2001). Trends In extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology, 21, 269–284.

Mikkonen, S., Laine, M., Makela, H. M., Gregow, H., Tuomenvirta, H., (...), Laaksonen, A. (2015). Trends in the average temperature in Finland, 1847–2013. Stochastic Environmental Research and Risk Assessment, 29(6), 1521-1529.

Mosmann, V., Castro, A., Fraile, R., Dessens, J., & Sanchez, J. L. (2004). Detection of statistically significant trends in the summer precipitation of mainland Spain. Atmospheric Research, 70(1), 43–53. DOI: 10.1016/j.atmosres.2003.11.002.

Nyatuame, M., Owusu-Gyimah, V., & Ampiaw, F., (2014). Statistical analysis of rainfall trend for Volta Region in Ghana. International Journal of Atmospheric Science, 1- 11. doi:10.1155/2014/203245.

Oliveira, P. T., Silva, C. S., & Lima, K. C. (2017). Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theoretical and Applied Climatology, 130(1-2), 77-90.

Palizdan, N., Falamarzi, Y., Huang, Y. F., Lee, T. S., & Ghazali, A. H. (2014). Regional precipitation trend analysis at the Langat River Basin, Selangor, Malaysia. Theoretical and Applied Climatology, 117(3-4), 589-606.

Palizdan, N., Falamarzi, Y., Huang, Y. F., Lee T. S., & Ghazali, A. H. (2015). Temporal precipitation trend analysis at the Langat River Basin, Selangor, Malaysia. Journal of Earth System Sciences, 124(8), 1623-1638.

Palizdan, N., Falamarzi, Y., Huang, Y. F., & Lee, T.S., (2017). Precipitation trend analysis using discrete wavelet transform at the Langat River Basin, Selangor, Malaysia. Stochastic Environmental Research and Risk Assessment, 31(4), 853-877.

Paparrizos, S., & Matzarakis, A., (2017). Assessment of future climate change impacts on the hydrological regime of selected Greek areas with different climate conditions. Hydrology Research, 48(5), 1327-1342

Parry, L., Harrison, S., Betts, R., Shannon, S., Jones, D. B., & Knight, J. (2020). Impacts of Climate Change on Himalayan Glaciers: Processes, Predictions and Uncertainties. In: A. P. Dimri, B. Bookhagen, M. Stoffel, & T. Yasunari (Eds). Himalayan Weather and Climate and their Impact on the Environment (pp. 331-349). Springer, Cham.

Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20(9), 2011-2026. DOI: 10.1002/hyp.5993.

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., (...), Fang, J. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43.

Pour, S. H., Wahab, A. K. A., & Shahid, S. (2020). Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia. Atmospheric Research, 233, 104720.

Raziei, T., Arasteh, P. D., & Saghafian, B. (2005). Annual rainfall trend in arid & semi–arid regions of Iran. ICID 21stEuropean regional Conference, 15–19 May 2005—Frankfurt (Oder) and Slubice—Germany and Poland, 20–28.

Rhee, J., & Im, J., (2017). Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data. Agriculture and Forest Meteorology, 237-238, 105-122. DOI: 10.1016/j.agrformet.2017.02.011.

Rodell, M, Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K. (2004). The global land data assimilation system. Bulletin of American Meteorological Society, 85(3), 381-394. DOI: 10.1 I75/BAMS-85-3-38I.

Ruiz-Alvarez, O., Singh, V. P., Enciso-Medina, J., Munster, C., Kaiser, R., (...), Dos Santos, C. A. C. (2019). Spatio-temporal trends in monthly pan evaporation in Aguascalientes, Mexico. Theoretical and Applied Climatology, 136(1-2), 775-789.

Sa’adi, Z., Shahid, S., Ismail, T., Chung, E. S., & Wang, X. J. (2019). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131(3), 263-277.

Sa’adi, Z., Shahid, S., Ismail, T., Chung, E. S., & Wang, X. J. (2017a). Distributional changes in rainfall and river flow in Sarawak, Malaysia. Asia-Pacific Journal of Atmospheric Sciences, 53(4), 489-500.

Sa'adi, Z., Shahid, S., Chung, E. S., & Bin Ismail, T. (2017b). Projection of spatial and temporal changes of rainfall in Sarawak of Borneo Island using statistical downscaling of CMIP5 models. Atmospheric research, 197, 446-460.

Sayyad, R. S., Dakhore, K. K., & Phad, S.V. (2019). Analysis of rainfall trend of Parbhani, Maharshtra using Mann–Kendall test. Econometrica, 13, 245-259.

Schloss, A. L., Vörösmarty, C., Willmott, C. J., & Choudhury, B. J. (1996). Analyzing the discharge regime of a large tropical river through remote sensing, ground‐based climatic data, and modelling. Water Resources Research, 32(10), 3137-3150. DOI: 10.1029/96WR01333.

Sen, P. K., (1968). Estimates of the regression coefficient based on Kendall's Tau. American Statistical Journal, 63 (324), 1379-1389. DOI: 10.2307/2285891.

Serrano-Notivoli, R., Martín‐Vide, J., Saz, M. A., Longares, L. A., Beguería, S., (...), Luis, M. (2018). Spatio-temporal variability of daily precipitation concentration in Spain based on a high-resolution gridded data set. International Journal of Climatology, 38, e518-e530.

Shadmani, M., Marofi, S., & Roknian, M. (2012). Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resources Management, 26(1), 211-224. DOI: 10.1007/s11269-011-9913-z.

Sharad, K. J., & Vijay, K., (2012). Trend analysis of rainfall and temperature data for India. Current Science, 102(1), 37-49.

Simpson, I. R., & McCarthy, M. P. (2019). Structural and sampling uncertainty in observed UK daily precipitation extremes derived from an intercomparison of gridded data sets. International Journal of Climatology, 39(1), 128-142.

Singh, V., & Xiaosheng, Q. (2019). Data assimilation for constructing long-term gridded daily rainfall time series over Southeast Asia. Climate Dynamics, 53(5-6), 3289-3313.

Sobral, B. S., Oliveira-Junior, J. F., Alecrim, F., Gois, G., Muniz-Júnior, J. G., (...), Zeri, M. (2020). PERSIANN-CDR based characterization and trend analysis of annual rainfall in Rio De Janeiro State, Brazil. Atmospheric Research, 238, 104873.

Sobral, B. S., Oliveira-Junior, J. F., Gois, G., Pereira-Júnior, E. R., Terassi, P. M. B. (2019). Drought characterization for the state of Rio de Janeiro based on the annual SPI index: trends, statistical tests and its relation with ENSO. Atmospheric research, 220, 141-154.

Soltani, S., Saboohi, R., & Yaghmaei, L., (2012). Rainfall and rainy days trend in Iran. Climatic Change, 110(1-2), 187-213. DOI: 10.1007/s10584-011-0146-1.

Soro, G. E., Noufé, D., Goula Bi, T. A., & Shorohou, B. (2016). Trend analysis for extreme rainfall at sub-daily and daily timescales in Côte d’Ivoire. Climate, 4(3), 37.

Suhaila, J., & Yusop, Z. (2018). Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics, 130(5), 565-581.

Suhaila, J., & Jemain, A.A. (2012). Spatial analysis of daily rainfall intensity and concentration index in Peninsular Malaysia. Theoretical and Applied Climatology, 108(1-2), 235-245.

Suhaila, J., Deni, S. M., & Jemain, A. A. (2008). Detecting inhomogeneity of rainfall series in Peninsular Malaysia. Asia-Pacific Journal of Atmospheric Science, 44(4), 369-380.

Suhaila, J., Zin, W. Z. W., Deni, S. M., & Jemain, A. A. (2010). Trends in peninsular Malaysia rainfall data during the southwest monsoon and northeast monsoon seasons: 1975–2004. Sains Malaysiana, 39(4), 533-542.

Tabari, H., Abghari, H., & Hosseinzadeh Talaee, P. (2012). Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrological Processes, 26(22), 3351-3361.

Tabari, H., Taye, M. T., & Willems, P. (2015). Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stochastic Environmental Research and Risk Assessment, 29(7), 1751-1761.

Tahir, T., Hashim, A. M., & Yusof, K. W., (2018). Statistical downscaling of rainfall under transitional climate in Limbang River Basin by using SDSM. In: IOP Conference Series: Earth and Environmental Science (Vol. 140, No. 1, p. 012037). IOP Publishing.

Teodoro, P.E., Oliveira-Júnior, J. F., Cunha, E. R., Correa, C., Torres, F. E., (...), Ribeiro, L. P. (2016). Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Mato Grosso do Sul State, Brazil. Meteorology and Atmospheric Physics, 128(2), 197-209.

Thomas, C. D., Cameron, A., Green, R., Bakkenes, M., Beaumont, L. J., (...), Williams, S. (2004). Extinction risk from climate change. Nature, 427(6970), 145.

Thompson, I., Mackey, B., McNulty, S., Mosseler, A. (2009). Forest resilience, biodiversity, and climate change. In: Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 43. 1-67. (Vol. 43, pp. 1-67).

Toride, K., Cawthorne, D. L., Ishida, K., Kavvas, M. L., Anderson, M. L. (2018). Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed. Science of the Total Environment, 626, 244-254.

Tuh, M. H., Robin, C. Y. H., & Rafidah, H. (2013). Trends of rainfall in Sarawak from 1999 to 2008. Proceeding of the International Conference on Social Science Research, ICSSR 2013, Penang, Malaysia. Organized by WorldConferences.net.

Uduak, C., UdoInyang., & Edem, I. (2012). Analysis of rainfall trends in AkwaIbom state, Nigeria. Journal of Environmental Earth Science, 2(8), 60-70.

Vijith, H., Hurmain, A., & Dodge-Wan, D. (2018) Impacts of land use changes and land cover alteration on soil erosion rates and vulnerability of tropical mountain ranges in Borneo. Remote Sensing Applications: Society and Environment, 12, 57–69.

Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, A., (...), Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389-395. DOI: 10.1038/416389a.

Wang, Y., Xu, Y., Tabari, H., Wang, J., Wang, Q., Song, S., & Hue, Z. (2020). Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmospheric Research, 231, 104673.

Wang, Y. Q. & Zhou, L. (2005). Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophysical Research Letters, 32, L09707.

Xu, C.Y., Gong, L., Jiang, T., Chen, D., & Singh, V. P. (2006). Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology, 327(1-2), 81-93. DOI: 10.1016/j.jhydrol.2005.11.029.

Xu, X., Yang, X., Zhu, B., Tang, Z., Wu, H., & Xie, L. (2020). Characteristics of MERRA-2 black carbon variation in east China during 2000–2016. Atmospheric Environment, 222, 117140.

Xu, Z.X., Takeuchi, K., Ishidaira, H., & Li, J. Y. (2005). Long-term trend analysis for precipitation in Asia Pacific Friend river basin. Hydrological Processes, 19(18), 3517–3532. DOI: 10.1002/hyp.5846.

Xu, Z. X., Takeuchi, K., & Ishidaira, H. (2003). Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology, 279(1-4), 144–150. DOI: 10.1016/S0022-1694(03)00178-1.

Yang, T., Sun, F., Liu, W., Wang, H., Wang, T., & Liu, C. (2019). Using Geo-detector to attribute spatio-temporal variation of pan evaporation across China in 1961–2001. International Journal of Climatology, 39(5), 2833-2840.

Yang, Z., Zhang, Q., & Hao, X. (2016). Evapotranspiration trend and its relationship with precipitation over the loess plateau during the last three decades. Advances in Meteorology, 2016.

Yatim, A. N. M., Latif, M. T., Ahamad, F., Khan, M. F., Nadzir, M. S. M., & Juneng, L. (2019). Observed Trends in Extreme Temperature over the Klang Valley, Malaysia. Advances in Atmospheric Sciences, 36(12), 1355-1370.

Yu, P. S., Yang, T. C., & Kuo, C. C. (2006). Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resources Management, 20(1), 1007–1023. DOI: 10.1007/s11269-006-9020-8.

Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes, 16(9), 1807–1829. DOI: 10.1002/hyp.1095.

Yue, S., & Wang, C. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3), 201-218. DOI: 10.1023/B:WARM.0000043140.61082.60.

Zafor, M. A., Farzana, S. Z., Chakraborty, A., & Rahman, A. (2016). Analysis of rainfall trends and variability at Sylhet region in Bangladesh. ARPN Journal of Engineering and Applied Sciences, 11(11), 6836 – 6846.

Zafor, M. A., Chakraborty, A., Muniruzzaman, S. M., & Mojumdar, S. R. (2016). Rainfall forecasting in northeastern part of Bangladesh using time series ARIMA Model. Research Journal of Engineering and Science, E-ISSN, 2278, 9472.

Zhang, X.L., Wang, S., Zhang, J. M., Wang, G., & Tang, X. Y. (2015). Temporal and spatial variability in precipitation trends in the Southeast Tibetan Plateau during 1961–2012. Climate of the Past Discussion, 11(1), 447-487. DOI: 10.5194/cpd-11-447-2015.

Zhao, H., Yang, S., Wang, Z., Zhou, X., Luo, Y., & Wu, L. (2015). Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China. Journal of Geographical Science, 25(2), 177-195.

How to Cite

APA

MV, N. K., MV, P. and H, V. (2020). Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo. Earth Sciences Research Journal, 24(3), 305–315. https://doi.org/10.15446/esrj.v24n3.77670

ACM

[1]
MV, N.K., MV, P. and H, V. 2020. Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo. Earth Sciences Research Journal. 24, 3 (Oct. 2020), 305–315. DOI:https://doi.org/10.15446/esrj.v24n3.77670.

ACS

(1)
MV, N. K.; MV, P.; H, V. Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo. Earth sci. res. j. 2020, 24, 305-315.

ABNT

MV, N. K.; MV, P.; H, V. Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo. Earth Sciences Research Journal, [S. l.], v. 24, n. 3, p. 305–315, 2020. DOI: 10.15446/esrj.v24n3.77670. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/77670. Acesso em: 18 apr. 2024.

Chicago

MV, Ninu Krishna, Prasanna MV, and Vijith H. 2020. “Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo”. Earth Sciences Research Journal 24 (3):305-15. https://doi.org/10.15446/esrj.v24n3.77670.

Harvard

MV, N. K., MV, P. and H, V. (2020) “Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo”, Earth Sciences Research Journal, 24(3), pp. 305–315. doi: 10.15446/esrj.v24n3.77670.

IEEE

[1]
N. K. MV, P. MV, and V. H, “Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo”, Earth sci. res. j., vol. 24, no. 3, pp. 305–315, Oct. 2020.

MLA

MV, N. K., P. MV, and V. H. “Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo”. Earth Sciences Research Journal, vol. 24, no. 3, Oct. 2020, pp. 305-1, doi:10.15446/esrj.v24n3.77670.

Turabian

MV, Ninu Krishna, Prasanna MV, and Vijith H. “Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo”. Earth Sciences Research Journal 24, no. 3 (October 12, 2020): 305–315. Accessed April 18, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/77670.

Vancouver

1.
MV NK, MV P, H V. Trend characteristics of rainy days and evaporation at a tropical rainforest region in East Malaysia, Borneo. Earth sci. res. j. [Internet]. 2020 Oct. 12 [cited 2024 Apr. 18];24(3):305-1. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/77670

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

409

Downloads

Download data is not yet available.