Published

2019-10-01

A spectral multidomain penalty method solver for the numerical simulation of granular avalanches

Método penalizado de multidominios espectrales para la simulación numérica de avalanchas granulares

DOI:

https://doi.org/10.15446/esrj.v23n4.77683

Keywords:

Granular avalanches, Numerical simulation, Spectral multidomain penalty method, Parameter analysis. (en)
Avalanchas granulares, Simulación numérica, Método penalizado de multidominios espectrales, Análisis de parámetros. (es)

Downloads

Authors

  • Mario Germán Trujillo-Vela Pontificia Universidad Javeriana https://orcid.org/0000-0003-1442-160X
  • Jorge Alberto Escobar-Vargas Pontificia Universidad Javeriana
  • Alfonso Mariano Ramos-Cañón Pontificia Universidad Javeriana
This work presents a high-order element-based numerical simulation of an experimental granular avalanche, in order to assess the potential of these spectral techniques to handle conservation laws in geophysics. The spatial discretization of these equations was developed via the spectral multidomain penalty method (SMPM). The temporal terms were discretized using a strong-stability preserving Runge-Kutta method. Stability of the numerical scheme is ensured with the use of a spectral filter and a constant or regularized lateral earth pressure coefficient. The test case is a granular avalanche that is generated in a small-scale rectangular flume with topographical gradient. A grid independence test was performed to clarify the order of the error in the mass conservation produced by the treatments here implemented. The numerical predictions of the granular avalanches are compared with experimental measurements performed by Denlinger & Iverson (2001). Furthermore, the boundary conditions and parameters such as lateral earth pressure coefficients and the momentum correction factor were analyzed to observe the incidence of these features when solving the granular flow equations. This work identifies the benefits and weaknesses of the SMPM to solve this set of equations and, it is possible to conclude that the SMPM provides an appropriate solution of the granular flow equations proposed by Iverson & Denlinger (2001). Besides, it produces comparable predictions to experimental data and numerical results given by other schemes.

Este trabajo presenta una simulación numérica basada en elementos de alto orden de una avalancha granular experimental, con el fin de evaluar el potencial de estas técnicas espectrales para tratar las leyes de conservación en geofísica. La discretización espacial de estas ecuaciones se desarrolló a través del método penalizado de multidominios espectrales (SMPM). Los términos temporales se discretizaron utilizando un método de Runge-Kutta de preservación de estabilidad fuerte. La estabilidad del esquema numérico se asegura con el uso de un filtro espectral y un coeficiente de presión lateral de tierras constante o regularizado. El caso de prueba es una avalancha granular que se genera en un canal rectangular de pequeña escala con gradiente topográfico. Se realizó un test de independencia de malla para aclarar el orden del error en la conservación de masas producida por los tratamientos aquí implementados. Las predicciones numéricas de las avalanchas granulares se comparan con las mediciones experimentales realizadas por Denlinger & Iverson (2001). Además, se analizaron  las condiciones de frontera y parámetros como el coeficiente de presión lateral de tierras y el factor de corrección de momento para observar la incidencia de estos parámetros al resolver las ecuaciones de flujo granular. Este trabajo identifica los beneficios y las debilidades del SMPM para resolver este conjunto de ecuaciones, con lo cual es posible concluir que el SMPM proporciona una solución adecuada de las ecuaciones de flujo granular propuestas por Iverson & Denlinger (2001). También, produce predicciones comparables con datos experimentales y resultados numéricos generados por otros esquemas.

References

Blackburn, H. M., & Schmidt, S. (2003). Spectral element filtering techniques for large eddy simulation with dynamic estimation. Journal of Computational Physics, 186(2), 610-629.

Boyd, J. P. (2001). Chebyshev and Fourier spectral methods. Courier Dover Publications, Mineola, New York, 2nd edition, 670 pp.

Bradford, S. F. & Sanders, B. F. (2002). Finite-volume model for shallow-water flooding of arbitrary topography. Journal of Hydraulic Engineering, 128(3), 289-298.

Canuto, C., Hussaini, M. Y., Quarteroni, A., & Thomas Jr, A. (2012). Spectral methods in fluid dynamics. Springer Science & Business Media. Berlin, Germany, 566 pp.

Castro-Orgaz, O., Hutter, K., Giraldez, J. V., & Hager, W. H. (2015). Nonhydrostatic granular flow over 3-D terrain: New boussinesq-type gravity waves? Journal of Geophysical Research: Earth Surface, 120(1), 1-28.

Costa, B. & Don, W. S. (2000). On the computation of high order pseudospectral derivatives. Applied Numerical Mathematics, 33(1), 151-159.

Denlinger, R. P. & Iverson, R. M. (2001). Flow of variably fluidized granular masses across three-dimensional terrain: Numerical predictions and experimental tests. Journal of Geophysical Research, 106(B1), 553-566.

Denlinger, R. P. & Iverson, R. M. (2004). Granular avalanches across irregular three-dimensional terrain: 1. theory and computation. Journal of Geophysical Research, 109 (F1), 1-14.

Diamessis, P. J., Lin, Y.-C., & Domaradzki, J. A. (2008). Effective numerical viscosity in spectral multidomain penalty method-based simulations of localized turbulence. Journal of Computational Physics, 227(17), 8145-8164.

Diamessis, P. J. & Redekopp, L. G. (2006). Numerical investigation of solitary internal wave-induced global instability in shallow water benthic boundary layers. Journal of physical oceanography, 36(5), 784-812.

Escobar-Vargas, J., Diamessis, P., & Giraldo, F. (2012). High-order discontinuous element-based schemes for the inviscid shallow water equations: Spectral multidomain penalty and discontinuous Galerkin methods. Applied Mathematics and Computation, 218(9), 4825-4848.

Fletcher, C. (1991). Computational Techniques for Fluid Dynamics 1 Fundamental and General Techniques Springer-Verlag Berlin Heidelberg 409 pp.

Giraldo, F. & Warburton, T. (2008). A high-order triangular discontinuous Galerkin oceanic shallow water model. International Journal for Numerical Methods in Fluids, 56(7), 899-925.

Gottlieb, D., & Hesthaven, J. S. (2001). Spectral methods for hyperbolic problems. Journal of Computational and Applied Mathematics, 128(1-2), 83-131.

Gottlieb, D., & Shu, C. W. (1997). On the Gibbs phenomenon and its resolution. SIAM review, 39(4), 644-668.

Gottlieb, D., & Tadmor, E. (1985). Recovering pointwise values of discontinuous data within spectral accuracy. In: Murman E.M., & Abarbanel S.S. (Editor). Progress and Supercomputing in Computational Fluid Dynamics. Progress in Scientific Computing vol 6, Birkhäuser Boston, Jerusalem, Israel, 357-375.

Gray, J., Wieland, M., & Hutter, K. (1999). Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1985), 93-138.

Gray J.M.N.T. (2003) Rapid Granular Avalanches. In: Hutter K., Kirchner N. (Editor) Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations. Lecture Notes in Applied and Computational Mechanics vol 11 Springer, Berlin, Germany 3-42

Hesthaven, J. S. & Gottlieb, A. D. (1996). A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions. Journal on Scientific Computing, 17(3), 579–612.

Hesthaven, J. S., Gottlieb, S., & Gottlieb, D. (2007). Spectral methods for time-dependent problems, Cambridge University Press, Cambridge, United Kingdom, 272 pp.

Hesthaven, J. S. & Kirby, R. (2008). Filtering in Legendre spectral methods. Mathematics of Computation, 77(263), 1425-1452.

Hesthaven, J. S. & Warburton, T. (2007). Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer Science & Business Media, 495 pp.

Hutter, K. & Greve, R. (1993). Two-dimensional similarity solutions for finite-mass granular avalanches with coulomb-and viscous-type frictional resistance. Journal of Glaciology, 39(132), 357-372.

Hutter, K. & Koch, T. (1991). Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 334(1633), 93-138.

Hutter, K.,Wang, Y., & Pudasaini, S. P. (2005). The Savage–Hutter avalanche model: how far can it be pushed? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1832), 1507–1528.

Iverson, R. M. (2014). Debris flows: behaviour and hazard assessment. Geology Today, 30(1), 15-20.

Iverson, R. M., & Denlinger, R. P. (2001). Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research: Solid Earth, 106(B1), 537-552.

Koch, T., Greve, R., & Hutter, K. (1994). Unconfined flow of granular avalanches along a partly curved surface. II. Experiments and numerical computations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 445(1924), 415-435.

Koschdon, K. & Schafer, M. (2003). A Lagrangian-Eulerian finite-volume method for simulating free surface flows of granular avalanches. In: Hutter K., Kirchner N. (Editor). Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations. Lecture Notes in Applied and Computational Mechanics vol 11 Springer Berlin Heidelberg, 83-108.

Kundu, P. & Cohen, L. (2008). Fluid Mechanics. Elsevier Acad. Press, London, England, 729 pp.

LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge university press, Cambridge, England, 529 pp.

Maday, Y., Kaber, S. M. O., & Tadmor, E. (1993). Legendre pseudo spectral viscosity method for nonlinear conservation laws. SIAM Journal on Numerical Analysis, 30(2), 321-342.

Navarra, A., Stern, W., & Miyakoda, K. (1994). Reduction of the Gibbs oscillation in spectral model simulations. Journal of climate, 7(8), 1169-1183.

Ouyang, C., He, S., Xu, Q., Luo, Y., & Zhang, W. (2013). A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Computers & Geosciences, 52(0), 1-10.

Pastor, M., Blanc, T., Haddad, B., Drempetic, V., Morles, M. S., Dutto, P., Stickle, M. M., Mira, P., & Merodo, J. F. (2015). Depth averaged models for fast landslide propagation: mathematical, rheological and numerical aspects. Archives of Computational Methods in Engineering, 22(1), 67-104.

Pudasaini, S. P. (2012). A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface, 117(F3), 799-819.

Pudasaini, S. P. & Hutter, K. (2007). Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer Science & Business Media, Berlin, Germany, 571 pp.

Reed, W. H. & Hill, T. (1973). Triangular mesh methods for the neutron transport equation. No. LA-UR-73-479; CONF-730414-2. Los Alamos Scientific Lab., N. Mex.(USA), 1973

Savage, S. B. & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177-215.

Spiteri, R. J. and Ruuth, S. J. (2002). A new class of optimal high order strong stability-preserving time discretization methods. SIAM Journal on Numerical Analysis, 40(0), 469-491.

Tai, Y. & Gray, J. (1998). Limiting stress states in granular avalanches. Annals of Glaciology, 26, 272-276.

Tai, Y.-C., Hutter, K., & Gray, J. (2001). Dense granular avalanches: mathematical description and experimental validation. In: Balmforth N.J., Provenzale A. (Editor). Geomorphological Fluid Mechanics, Lecture Notes in Physics vol 582, Springer Berlin Heidelberg, 339-366.

Tai, Y. C., Noelle, S., Gray, J., & Hutter, K. (2002). Shock-capturing and front-tracking methods for granular avalanches. Journal of Computational Physics, 175(1), 269-301.

Tai, Y.-C., Wang, Y., Gray, J., & Hutter, K. (1999). Methods of similitude in granular avalanche flows. In: Hutter K., Wang Y., Beer H. (Editor). Advances in Cold-Region Thermal Engineering and Sciences, Lecture Notes in Physics vol 533, Springer Berlin Heidelberg, 415-428.

Toro, E. F. (2013). Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, 592 pp.

Trujillo-Vela, M. G. (2015). Simulación numérica de flujos de material desagregado. Método penalizado de multidominios espectrales. M.Sc. Thesis, Maestría en Hidrosistemas, Pontificia Universidad Javeriana, Bogotá D. C., Colombia

Vandeven, H. (1991). Family of spectral filters for discontinuous problems. Journal of Scientific Computing, 6(2), 159-192.

Vollmoller, P. (2004). A shock-capturing wave-propagation method for dry and saturated granular flows. Journal of Computational Physics, 199(1), 150-174.

Wang, Y., Hutter, K., & Pudasaini, S. P. (2004). The Savage-Hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud. Zeitschrift fur angewandte Mathematik und Mechanik ZAMM, 84(8), 507-527.

Wieland, M., Gray, J., & Hutter, K. (1999). Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. Journal of Fluid Mechanics, 392,73-100.

Zhou, J. G. (2004). Lattice Boltzmann methods for shallow water flows. Springer, Berlin, 109 pp.

How to Cite

APA

Trujillo-Vela, M. G., Escobar-Vargas, J. A. and Ramos-Cañón, A. M. (2019). A spectral multidomain penalty method solver for the numerical simulation of granular avalanches. Earth Sciences Research Journal, 23(4), 317–329. https://doi.org/10.15446/esrj.v23n4.77683

ACM

[1]
Trujillo-Vela, M.G., Escobar-Vargas, J.A. and Ramos-Cañón, A.M. 2019. A spectral multidomain penalty method solver for the numerical simulation of granular avalanches. Earth Sciences Research Journal. 23, 4 (Oct. 2019), 317–329. DOI:https://doi.org/10.15446/esrj.v23n4.77683.

ACS

(1)
Trujillo-Vela, M. G.; Escobar-Vargas, J. A.; Ramos-Cañón, A. M. A spectral multidomain penalty method solver for the numerical simulation of granular avalanches. Earth sci. res. j. 2019, 23, 317-329.

ABNT

TRUJILLO-VELA, M. G.; ESCOBAR-VARGAS, J. A.; RAMOS-CAÑÓN, A. M. A spectral multidomain penalty method solver for the numerical simulation of granular avalanches. Earth Sciences Research Journal, [S. l.], v. 23, n. 4, p. 317–329, 2019. DOI: 10.15446/esrj.v23n4.77683. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/77683. Acesso em: 14 jul. 2024.

Chicago

Trujillo-Vela, Mario Germán, Jorge Alberto Escobar-Vargas, and Alfonso Mariano Ramos-Cañón. 2019. “A spectral multidomain penalty method solver for the numerical simulation of granular avalanches”. Earth Sciences Research Journal 23 (4):317-29. https://doi.org/10.15446/esrj.v23n4.77683.

Harvard

Trujillo-Vela, M. G., Escobar-Vargas, J. A. and Ramos-Cañón, A. M. (2019) “A spectral multidomain penalty method solver for the numerical simulation of granular avalanches”, Earth Sciences Research Journal, 23(4), pp. 317–329. doi: 10.15446/esrj.v23n4.77683.

IEEE

[1]
M. G. Trujillo-Vela, J. A. Escobar-Vargas, and A. M. Ramos-Cañón, “A spectral multidomain penalty method solver for the numerical simulation of granular avalanches”, Earth sci. res. j., vol. 23, no. 4, pp. 317–329, Oct. 2019.

MLA

Trujillo-Vela, M. G., J. A. Escobar-Vargas, and A. M. Ramos-Cañón. “A spectral multidomain penalty method solver for the numerical simulation of granular avalanches”. Earth Sciences Research Journal, vol. 23, no. 4, Oct. 2019, pp. 317-29, doi:10.15446/esrj.v23n4.77683.

Turabian

Trujillo-Vela, Mario Germán, Jorge Alberto Escobar-Vargas, and Alfonso Mariano Ramos-Cañón. “A spectral multidomain penalty method solver for the numerical simulation of granular avalanches”. Earth Sciences Research Journal 23, no. 4 (October 1, 2019): 317–329. Accessed July 14, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/77683.

Vancouver

1.
Trujillo-Vela MG, Escobar-Vargas JA, Ramos-Cañón AM. A spectral multidomain penalty method solver for the numerical simulation of granular avalanches. Earth sci. res. j. [Internet]. 2019 Oct. 1 [cited 2024 Jul. 14];23(4):317-29. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/77683

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Mario Germán Trujillo-Vela, Alfonso Mariano Ramos-Cañón, Jorge Alberto Escobar-Vargas, Sergio Andrés Galindo-Torres. (2022). An overview of debris-flow mathematical modelling. Earth-Science Reviews, 232, p.104135. https://doi.org/10.1016/j.earscirev.2022.104135.

2. Ping Huang, Wei Huang, Yongliang Zhang, Shibin Tang. (2021). Simulation study on sectional ventilation of long-distance high-temperature roadway in mine. Arabian Journal of Geosciences, 14(16) https://doi.org/10.1007/s12517-021-07880-z.

3. Minu Treesa Abraham, Neelima Satyam, Julia Kowalski. (2024). Numerical Modelling of Debris Flows for Simulation-Based Decision Support: An Indian Perspective. Indian Geotechnical Journal, https://doi.org/10.1007/s40098-024-00988-5.

Dimensions

PlumX

Article abstract page views

801

Downloads

Download data is not yet available.