Published

2019-10-01

Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil)

Adsorción de plomo (Pb) en suelos tropicales fuertemente meteorizados (Región del Valle de Ribeira - Brasil)

DOI:

https://doi.org/10.15446/esrj.v23n4.77869

Keywords:

Physic-chemical parameters, liners, residual soil, isotherms, batch test, sorption (en)
parámetros fisicoquímicos, revestimientos, suelo residual, isotermas, prueba de lotes, sorción (es)

Downloads

Authors

  • Carla Patinha Campus de Santiago Aveiro University
  • Mariana Consiglio Kasemodel São Carlos School of Engineering; University of São Paulo
  • Eduardo Anselmo Ferreira da Silva Campus de Santiago Aveiro University
  • Valéria Guimarães Rodrigues São Carlos School of Engineering; University of São Paulo https://orcid.org/0000-0001-8937-839X
  • Jéssica Pelinsom Marques São Carlos School of Engineering; University of São Paulo

Lateritic soils have been widely used in the construction of landfill base liners for municipal and industrial waste. On the other hand, there is little practice in the use of strongly weathered residual soils for this finality. The use of local soil for the construction of liners in order to waterproof and retain contaminants represents an alternative to control this type of contamination. Thus, the objective of this study was to determine the physical and chemical properties of a strongly weathered tropical soil (residual soil) collected in the city of Eldorado Paulista (Ribeira Valley), and to evaluate the abilityof this soil to adsorb lead (Pb). The contamination of soil and water by Pb due to inadequate mining waste disposal is common in this region. The Pb was adsorbed by the residual soil, mainly at the lowest initial concentrations. When the initial concentration of 20 mg L-1 was used, the adsorption percentage of Pb was 92.5% and when the initial concentration was 100 mg L-1, the adsorption rate was 81.7%. In addition to the retention of Pb, this soil presented the following characteristics which are favorable for using soils in the construction of liners: fine granulometry, liquid limit (LL) of 57%, plasticity index (PI) of 33%, oxidizing medium and the predominance of negative charges on the surface of the colloidal particles. Thus, it is concluded that the weathered tropical residual soil exhibits characteristics that allow it to be used as a liner in the disposal of residues containing Pb.

Los suelos lateríticos se han utilizado ampliamente en la construcción de revestimientos de basureros para residuos municipales e industriales. Por otro lado, hay poca práctica en el uso de suelos residuales fuertemente meteorizados para esta finalidad. El uso de suelo local para la construcción de revestimientos para impermeabilizar y retener contaminantes representa una alternativa para controlar este tipo de contaminación. Por lo tanto, el objetivo de este estudio fue determinar las propiedades físicas y químicas de un suelo tropical fuertemente degradado (suelo residual) recolectado en la ciudad de Eldorado Paulista (Valle de Ribeira), y evaluar la capacidad de este suelo para adsorber plomo (Pb). La contaminación del suelo y el agua por Pb debido a la eliminación inadecuada de los desechos mineros es común en esta región. El Pb fue adsorbido por el suelo residual, principalmente en las concentraciones iniciales más bajas. Cuando se utilizó la concentración inicial de 20 mg L-1, el porcentaje de adsorción de Pb fue del 92,5% y cuando la concentración inicial fue de 100 mg L-1, la tasa de adsorción fue del 81,7%. Además de la retención de Pb, este suelo presentó las siguientes características que son favorables para el uso de suelos en la construcción de revestimientos: granulometría fina, límite de líquido (LL) del 57%, índice de plasticidad (PI) del 33%, medio oxidante y El predominio de las cargas negativas en la superficie de las partículas coloidales. Por lo tanto, se concluye que el suelo residual tropical degradado presenta características que le permiten ser utilizado como revestimiento en la eliminación de residuos que contienen Pb.

References

ABNT - Associação Brasileira De Normas Técnicas (Brazilian Association of Technical Standards) (1984). Brazilian Standard NBR 6459.

Determination of Liquid Limit. Rio de Janeiro, Brazil.

ABNT - Associação Brasileira De Normas Técnicas (Brazilian Association of Technical Standards) (1984). Brazilian Standard NBR7180. Determination of Plasticity Limit. Rio de Janeiro, Brazil.

Adriano, D.C. (1986). Trace Elements in the Terrestrial Environments. Springer-Verlang, New York.

Albers, A. P. F.; Melchiades, F. G.; Machado, R.; Baldo, J. B.; Boschi, A. O. (2002). A simple method for the characterization of clay minerals by X-ray diffraction. Cerâmica. 48(305), 34-37. https://dx.doi.org/10.1590/S0366-69132002000100008.

Alleoni, L. R. F.; Iglesias, C. S. M.; Mello, S. C.; De Camargo, O. A.; Casagrande, J. C.; Lavorenti, N. A. (2005). Atributos do solo relacionados à adsorção de cádmio e cobre em solos tropicais. Acta. Sci. Afron. 27(4), 729-737. https://dx.doi.org/10.4025/actasciagron.v27i4.1348.

Alleoni, L. R. F.; Mello, J, W. V.; Rocha, W. S. D. (2016). Eletroquímica, adsorção e troca iônica no solo. In: Melo, V. F.; Alleoni, L. R. F. Química e Mineralogia do Solo Parte II – Aplicações. Sociedade Brasileira de Ciência do Solo, Viçosa.

Amadi, A. A.; Eberemu, A. O. (2012). Delineation of compaction criteria for acceptable hydraulic conductivity of lateritic soil-bentonite mixtures designed as landfill liners. Envirn. Earth. Sci. 67, 999-1006. https://dx.doi.org/10.1007/s12665-012-1544-z.

Arab, P. B.; Araújo, T. P.; Pejon, O. J. (2015). Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Appl. Clay. Sci. 114, 133-14. http://dx.doi.org/10.1016/j.clay.2015.05.020.

Araújo, H. A. S. (2015). Estudo da adsorção de Pb, Zn e Cd por material inconsolidado transportado da região do Vale do Ribeira (SP). Graduate thesis. Universidade de São Paulo. São Carlos, Brazil.

Araújo, W. A. Sobrinho, N. M. B. A.; Mazur, N.; Gomes, P. C. (2002). Relação entre adsorção de metais pesados e atributos químicos e físicos de classes de solo no Brasil. Rev. Bras. de Ciênc. Solo, 26(1), 17-27. http://dx.doi.org/10.1590/S0100-06832002000100003.

Bascomb, C. L. (1964). Rapid method for the determination of cation-exchange capacity of calcareous and non-calcareous soils. J. Sci. Food Agr. 15(12), 821-823. https://doi.org/10.1002/jsfa.2740151201.

Boscov, M. E. G., Oliveira, E.; Ghilard, M.P.; Silva, M.M. (1999). Difusão de metais através de uma argila laterítica compactada, IV Congresso Brasileiro de Geotecnia Ambiental. REGEO. São José dos Campos, Brazil, 323-330.

Boscov, M. E. G.; Hachich, W. C.; Mahler, C. F.; Oliveira, E. (2011). Properties of a lateritic soil for pollutant containment. J. Environ. Prot. 2, 923-931. https://doi.org/10.4236/jep.2011.27105.

Bosso, S. T.; Enzweiller, J. (2002). Evaluation of heavy metal removal from aqueous solution onto scolecite. Water Res. 36. 4795-4800. https://doi.org/10.1016/S0043-1354(02)00208-7.

Bourg, A. C. M.; Loch, J. P. G. (1995). Mobilization of heavy metals as affected by pH and redox conditions. In: Salomons, W.; Stigliani, W. M. Biogeodynamics of Pollutants in Soils and Sediments. Springer-Verlag, New York.

Braz, A. M. S.; Fernandes, A. R.; Ferreira, J. R.; Alleoni, L. R. (2013). Distribution coefficients of potentially toxic elements in soils from the eastern Amazon. Environ. Sci. Pollut. Res. Int. 20(10), 7231-42. https://doi.org/10.1007/s11356-013-1723-9.

Colzato, M.; Alleoni, L.R.F.; Kamogawa, M.Y. (2018). Cadmium sorption and extractability in tropical soils with variable charge. Environ. Monit. Assess. 190(345). https://doi.org/10.1007/s10661-018-6666-7.

Coringa, E. A. O.; Weber, O. L. S. (2008). Ponto de efeito salino nulo de latossolos da microbacia Chico Nunes, Mato Grosso. Rev. Bras. Ciênc. Solo, 32(1), 441-448. https://doi.org/ 10.1590/S0100-06832008000100042.

Diagboya, P. N.; Olu-Owolabi, B. I.; Adebowale, K. O. (2015). Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environ. Sci. Pollut. Res. Int. 22(13), 10331-9. https://doi.org/ 10.1007/s11356-015-4241-0.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural Research Corporation) (2011). Manual de Métodos de Análise de Solo, Second ed, Rio de Janeiro, RJ.

Eusterhues, K.; Rumpel, C.; Kögel-Knabner, I. (2005). Stabilization of soil organic matter isolated via oxidative degradation. Org. Geochem., 36, 1567-1575. https://doi.org/10.1016/j.orggeochem.2005.06.010.

Fageria, N. K.; Barbosa Filho, M. P.; Zimmermann, F. J. P. (1994). Characterization of physical and chemical properties of lowland soils of some states of Brazil. Pesq. Agropec. Bras. 29, 267-274.

Fagundes, J. R. T.; Zuquette, L. V. (2009). Capacidade de sorção de materiais inconsolidados residuais da Formação Botucatu, região de São Carlos (SP), Brasil. Rev. Bras. Geoc. 39(3), 494-506. Available at: http://www.ppegeo.igc.usp.br/index.php/rbg/article/view/7693/7120.

Gabas, S. G.; Sarkis, J. E. S.; Boscov, M. E. G. (2016). Heavy metal diffusion and retention in a mineral barrier of compacted lateritic soil. Rev. Bras. Geo. Eng. Amb, 4, 9-22.

Gabarrón, M.; Faz, A.; Martínez-Martínez, S.; Acosta, J. A. (2018). Change in metals and arsenic distribution in soil and their bioavailability beside old tailing ponds. J. Environ. Manage. 212, 292-300. https://doi.org/10.1016/j.jenvman.2018.02.010.

Guimarães, V.; Sígolo, J. B. (2008). Detection of contaminants in a bioindicator species (Corbicula flumínea) – Ribeira de Iguape river, São Paulo state. Quim. Nova. 31(7). 1696-1698. http://dx.doi.org/10.1590/S0100-40422008000700018.

Gupta, S. S.; Bhattacharyya, K. G. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J. Environ. Manage. 87, 46-58. https://doi.org/10.1016/j.jenvman.2007.01.048.

ISO - International Organization for Standardization (2005). ISO 10390 - Soil quality - Determination of pH.

ISO - International Organization for Standardization (1995). ISO 13536 - Soil quality - Determination of the potential cation exchange capacity and exchangeable cations using barium chloride solution buffered at pH = 8,1.

Kasemodel, M. C.; Lima, J. Z.; Sakamoto, I. K.; Varesche, M. B. A.; Trofino, J.; Rodrigues, V. G. S. (2016) Soil contamination assessment for Pb, Zn and Cd in a slag disposal area using integration of geochemical and microbiological data. Environ. Monit. Assess. 188. 698-732. DOI 10.1007/s10661-016-5708-2.

Keng, J.C.; Uehara, G. (1973). Chemistry, mineralogy, and taxonomy of oxisols and ultisols. In: Procceedings of Soil Crop Science Society of Florida, 33, 119-926.

Korf, E. P. (2011). Comportamento hidráulico e reativo de uma mistura solo-cimento para aplicação em barreiras de contenção de resíduos ácidos contendo chumbo e cádmio. M.Sc. thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Langmuir, D. (1997). Aqueous Environmental Geochemistry. Prentice Hall, New Jersey, USA.

Lee, S. Z.; Chang, L.; Yang, H. H.; Chen, C. M.; Liu, M. C. (1998). Adsorption characteristics of lead onto soils. J. Hazard. Mater. 63, 37-49. https://doi.org/10.1016/S0304-3894(98)00203-9.

Lima, R. M. F.; Luz, J. A. M. (2001). Análise granulométrica por técnicas que se baseiam na sedimentação gravitacional: Lei de Stokes. Rev. Esc. Minas. 54(2), 155-159. http://dx.doi.org/10.1590/S0370-44672001000200014.

Linhares, A. L.; Filho, F. B. E.; De Oliveira, C. V.; De Bellis, V. M. (2009). Adsorção de cádmio e chumbo em solos tropicais altamente intemperizados. Pesq. Agropec. Bras. Brasília. 44 (3), 291-299. http://dx.doi.org/10.1590/S0100-204X2009000300011.

Lustberg, M.; Silbergeld, E. (2002). Blood lead levels and mortality, Arch. Intern. Med. 162 (21), 2443-2449. https://doi.org/10.1001/archinte.162.21.2443.

Mackenzie, R. C. (1957). The Differential Thermal Investigation of Clays. Mineralogical Society, London, UK.

Mahiques, M. M.; Figueira, R. C. L.; Slaroli, A. B.; Alves, D. P. V.; Gonçalves, C. (2013). 150 years of antropogenic metal input in a Biosphere Reserve: The case study of the Cananéia-Iguape coastal system, Southeastern Brazil. Environ Earth Sci. 68. 1073-1087. DOI 10.1007/s12665-012-1809-6.

Miguel, M. G.; Barreto, R. P.; Pereira, S. Y. (2017). Study of a tropical soil in order to use it to retain aluminium, iron, manganese and fluoride from acid mine drainage. J. Environ. Manage. 204, 563-570. http://dx.doi.org/10.1016/j.jenvman.2017.09.024.

Mohamed, A. M. O.; Paleologos, E. K., Rodrigues, V. G. S., Singh, D. N., 2018. Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport. Butterworth-Heineman, Elsevier. 708p.

Nogueira, T. A. R.; Abreu-Junior, C. H.; Alleoni, L. R. F.; He, Z.; Soares, M. R.; Vieira, C. S.; Lessa, L. G. F.; Capra, G. F. (2018). Brackground concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. J. Environ. Manage. 221 10-19. https://doi.org/10.1016/j.jenvman.2018.05.048.

Odukoya, A. M.; Oresanya, O.; Abimbola, A. F. (2013). Biogeochemical and engineering characteristics of soils and groundwater around a dumpsite. Earth Sci. Res. J. 17(1) p53-60.

Oliveira, L. F. C.; Lemke-De-Castro, M. L.; Rodrigues, C.; Borges, J. D. (2010). Isotermas de sorção de metais pesados em solos do cerrado de Goiás. Rev. Bras. Eng. Agr. Amb. 14(7), 776-782. https://doi.org/10.1590/S1415-43662010000700014.

Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N.; Tsatsakis, A. M. (2005). Lead toxicity update. A brief review. Med Sci Monit. 11(10), 329-336. https://www.ncbi.nlm.nih.gov/pubmed/16192916.

Paranavithana, G. N.; Kawamoto, K.; Inoue, Y.; Saito, T.; Vithanage, M.; Kalpage, C. S.; Herath, G. B. B. (2016). Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environ Earth Sci. 75. 484-496. DOI 10.1007/s12665-015-5167-z.

Pejon, O. J. (1992). Mapeamento geotécnico da folha Piracicaba-SP (escala 1:100.000): Estudo de aspectos metodológicos, de caracterização e de apresentação dos atributos. Ph.D. thesis. Universidade de São Paulo. São Carlos, Brazil.

Piedade, T. C.; Melo, V. F.; Souza, L. C. P.; Dieckow, J. (2014). Three-dimensional data interpolation for environmental purpose: Lead in contaminated soil in Southern Brazil. Environ. Monit. Assess. 186, 5625-5638. DOI 10.1007/s10661-014-3808-4.

Pierangeli, M. A. P. Guilherme, L. R. G. Curi, N. Silva, M. L. N., Oliveira, L. R. E Lima, J. M. (2001). Efeito do pH na adsorção-dessorção de chumbo em latossolos brasileiros. Rev Bras Ciênc Solo. 25(2), 269-277. http://dx.doi.org/10.1590/S0100-06832001000200003.

Qian, X.; Koerner, R. M.; Gray, D. H. (2002). Geotechnical Aspects of Landfill Design and Construction. Prentice Hall, Upper Saddle River.

Raij, B. V.; Peech, M. (1972). Electrochemical properties of some brazilian soils. Proc. Soil. Soc. Am. 36, 587-593.

Rieuwerts, J. S. (2007). The mobility and bioavailability of trace metals in tropical soils: A review. Chem Spec Bioavailab, 19 (2), 75-85. https://doi.org/10.3184/095422907X211918.

Rodrigues, V. G. S.; Fujikawa, A.; Abessa, D. M. S.; Hortellani, M. A.; Sarkis, J. E.; Sígolo, J. B. (2012). Using the freshwater bivalve Anodontites tenebricosus (LEA, 1834) as a biomonitor of metals in the Ribeira de Iguape river. Quim. Nova. 35. 454-456. http://dx.doi.org/10.1590/S0100-40422012000300003.

Rowe, R. K.; Quigley, R. M.; Booker, J. R. (1995). Clayey Barrier Systems for Waste Disposal Facilities. Chapman and Hall, London, UK.

Roy, W. R., Krapac, I. G., Chou, S. F. J., Griffin, R. A. (1992). Batch type procedures for estimating soil adsorption of chemicals. Technical resource document. EPA/530-SW-87-006-F, Cincinnati, EUA.

Santos, P. S. (1989). Ciência e Tecnologia de Argilas. Edgar Blücher. São Paulo, Brazil.

Skempton A. W. (1953). The colloidal activity of clays. In: Proceedings of the third international conference on soil mechanics and foundation engineering. Zurich, Switzerland, ICOSOMEF, 57-61.

Silva, M. L.; Curi, N.; Marques, J. J. G. S. M.; Guilherme, L. R. G.; Lima, J. M. (1996). Ponto de efeito salino nulo e suas relações com propriedades mineralógicas e químicas de latossolos brasileiros. Pesq. Agropec. Bras. 31(9), 663-671. https://ainfo.cnptia.embrapa.br/digital/bitstream/AI-SEDE/19333/1/pab96_10_set.pdf.

Soares, M. R.; Casagrande, J. C. Adsorção E Modelos. In: Ribeiro, M. R.; Nascimento, C. W. A.; Filho, M. R. R.; Cantalice, J. R. B. Tópicos em Ciência do Solo. Volume 1. Sociedade Brasileira de Ciência do Solo, Viçosa, Brazil.

Sparks, D. L. (1995). Environmental Soil Chemistry. Academic Press, San Diego, USA.

Sposito, G. (1984). The Surface Chemistry of Soils. University Press, Oxford, UK.

Sposito, G. (2004). The Surface Chemistry of Natural Particles. University Press, Oxford, UK.

Skerfving, S.; Bergdahl, I. A. (2007). Lead In: Nordberg, G. F.; Fowler, B. A.; Nordberg, M.; Friberg, L. T. Handbook on the Toxicology of Metals, Third Edition, Academic Press. 599-643. https://doi.org/10.1016/B978-012369413-3/50086-0.

Tan, K. H.; Hajek, B. F.; Barshad, I. (1986). Thermal analysis techniques. In: Klute, A. Methods of Soil Analysis – Physical and Mineralogical Methods. Second Edition. American Society of Agronomy. 151-183.

Tramonte, K. M.; Figueira, R. C. L.; Ferreira, P. A. L.; Ribeiro, A. P.; Batista, M. F.; Mahiques, M. M. (2016). Environmental availability of potentially toxic elements in estuarine sediments of the cananéia-Iguape coastal system, Southeastern Brazil. Mar. Pollut. Bull. 103. 260-269. https://doi.org/10.1016/j.marpolbul.2015.12.011.

USDA – United States Department of Agriculture. (2000). Heavy Metal Soil Contamination. Soil Quality – Urban Technical Note, nº 3. Auburn, Alabama, USA. 7p.

Wedepohl, K. H. (1995). The composition of the continental crust. Geochim. Cosmochim. Ac. 59, 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2.

Wuana, R. A.; Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices - Ecology. 20p. http://dx.doi.org/10.5402/2011/402647.

Vinhal-Freitas, I. C.; Maldonado, A. C. D.; Alvarenga, C. B.; Camargo, R.; Wendling, B. (2010). Adsorção e dessorção de metais no solo e coeficientes de isotermas de Freundlich e Langmuir. Rev Agropec Técn. 31(2), 153-163. https://doi.org/10.25066/agrotec.v31i2.4516.

Yong, R. N. Mohamed, A. M. O.; Warkentin, B. P. (1992). Principles of Contaminant Transport in Soils. Elsevier, Amsterdam, Netherlands.

Zia, A.; Berg, L.V.D.; Ahmad, M.N.; Riaz, M.; Zia, D.; Ashmore, M. (2018). Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK). J. Environ. Manage. 222, 260-267. https://doi.org/10.1016/j.jenvman.2018.05.076.

Zuquette, L. V.; Silva Jr. E. M.; Garcia, A., 2008. Aspectos de sorção para os materiais inconsolidados da região de São Carlos (SP). Rev. Esc. Minas. 1(2), 219-230. http://dx.doi.org/10.1590/S0370-44672008000200017.

How to Cite

APA

Patinha, C., Kasemodel, M. C., Ferreira da Silva, E. A., Rodrigues, V. G. and Marques, J. P. (2019). Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil). Earth Sciences Research Journal, 23(4), 385–395. https://doi.org/10.15446/esrj.v23n4.77869

ACM

[1]
Patinha, C., Kasemodel, M.C., Ferreira da Silva, E.A., Rodrigues, V.G. and Marques, J.P. 2019. Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil). Earth Sciences Research Journal. 23, 4 (Oct. 2019), 385–395. DOI:https://doi.org/10.15446/esrj.v23n4.77869.

ACS

(1)
Patinha, C.; Kasemodel, M. C.; Ferreira da Silva, E. A.; Rodrigues, V. G.; Marques, J. P. Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil). Earth sci. res. j. 2019, 23, 385-395.

ABNT

PATINHA, C.; KASEMODEL, M. C.; FERREIRA DA SILVA, E. A.; RODRIGUES, V. G.; MARQUES, J. P. Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil). Earth Sciences Research Journal, [S. l.], v. 23, n. 4, p. 385–395, 2019. DOI: 10.15446/esrj.v23n4.77869. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/77869. Acesso em: 29 mar. 2024.

Chicago

Patinha, Carla, Mariana Consiglio Kasemodel, Eduardo Anselmo Ferreira da Silva, Valéria Guimarães Rodrigues, and Jéssica Pelinsom Marques. 2019. “Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil)”. Earth Sciences Research Journal 23 (4):385-95. https://doi.org/10.15446/esrj.v23n4.77869.

Harvard

Patinha, C., Kasemodel, M. C., Ferreira da Silva, E. A., Rodrigues, V. G. and Marques, J. P. (2019) “Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil)”, Earth Sciences Research Journal, 23(4), pp. 385–395. doi: 10.15446/esrj.v23n4.77869.

IEEE

[1]
C. Patinha, M. C. Kasemodel, E. A. Ferreira da Silva, V. G. Rodrigues, and J. P. Marques, “Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil)”, Earth sci. res. j., vol. 23, no. 4, pp. 385–395, Oct. 2019.

MLA

Patinha, C., M. C. Kasemodel, E. A. Ferreira da Silva, V. G. Rodrigues, and J. P. Marques. “Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil)”. Earth Sciences Research Journal, vol. 23, no. 4, Oct. 2019, pp. 385-9, doi:10.15446/esrj.v23n4.77869.

Turabian

Patinha, Carla, Mariana Consiglio Kasemodel, Eduardo Anselmo Ferreira da Silva, Valéria Guimarães Rodrigues, and Jéssica Pelinsom Marques. “Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil)”. Earth Sciences Research Journal 23, no. 4 (October 1, 2019): 385–395. Accessed March 29, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/77869.

Vancouver

1.
Patinha C, Kasemodel MC, Ferreira da Silva EA, Rodrigues VG, Marques JP. Adsorption of lead (Pb) in strongly weathered tropical soil (Ribeira Valley region - Brazil). Earth sci. res. j. [Internet]. 2019 Oct. 1 [cited 2024 Mar. 29];23(4):385-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/77869

Download Citation

CrossRef Cited-by

CrossRef citations7

1. Mariana Consiglio Kasemodel, Valéria Guimarães Silvestre Rodrigues. (2022). Soil Particle Size Fractioning and Pb and Cd Bioaccessibility on a Dirt Road Near Former Beneficiation and Smelting Plant. Water, Air, & Soil Pollution, 233(12) https://doi.org/10.1007/s11270-022-05936-8.

2. Mehmet Keçeci, Sadık Usta, Veli Uygur. (2020). Lead adsorption in soils and the effect of soil properties: case study from Turkey. Environmental Earth Sciences, 79(18) https://doi.org/10.1007/s12665-020-09156-3.

3. Danielle Siqueira, Ricardo Cesar, Rodrigo Lourenço, André Salomão, Marcia Marques, Helena Polivanov, Matheus Teixeira, Mariana Vezzone, Domynique Santos, Gustavo Koifman, Yan Fernandes, Ana Paula Rodrigues, Katia Alexandre, Manuel Carneiro, Luiz Carlos Bertolino, Nelson Fernandes, Lilian Domingos, Zuleica C. Castilhos. (2022). Terrestrial and aquatic ecotoxicity of iron ore tailings after the failure of VALE S.A mining dam in Brumadinho (Brazil). Journal of Geochemical Exploration, 235, p.106954. https://doi.org/10.1016/j.gexplo.2022.106954.

4. M. Consiglio Kasemodel, E. L. Romão, T. Bueno Ruiz Papa. (2024). Adsorption of methylene blue on babassu coconut (Orbignya speciosa) mesocarp commercial biochar. International Journal of Environmental Science and Technology, 21(2), p.1671. https://doi.org/10.1007/s13762-023-05066-6.

5. Jéssica Pelinsom Marques, Isabela Monici Raimondi Nauerth, Mariana Consiglio Kasemodel, Valéria Guimarães Silvestre Rodrigues. (2024). Systematic review of alternative materials that improve retention of potentially toxic metals in soil/clay liners in waste disposal areas. Environmental Monitoring and Assessment, 196(4) https://doi.org/10.1007/s10661-024-12546-w.

6. Jéssica Pelinsom Marques, Carlos Manoel Pedro Vaz, Joel Barbujiani Sígolo, Valéria Guimarães Silvestre Rodrigues. (2022). Soils of the Ribeira Valley (Brazil) as Environmental Protection Barriers: Characterization and Adsorption of Lead and Cadmium. Sustainability, 14(9), p.5135. https://doi.org/10.3390/su14095135.

7. I. M. Raimondi, E. M. Vieira, L. A. A. Vaz, V. G. S. Rodrigues. (2022). Comparison of sugarcane pressmud with traditional low-cost materials for adsorption of lead and zinc in mining areas. International Journal of Environmental Science and Technology, 19(6), p.4627. https://doi.org/10.1007/s13762-021-03420-0.

Dimensions

PlumX

Article abstract page views

586

Downloads

Download data is not yet available.