Published

2020-01-01

A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency

Deslizamiento de tierra ocasionado por el flujo de detritos en el río Yigong (China): factores, procesos dinámicos y tendencia

DOI:

https://doi.org/10.15446/esrj.v24n1.78094

Keywords:

Catastrophic Landslide triggered debris flow, Dynamic process, Main controlling factors, Tendency analysis, Yigong, Tibet (en)
deslizamienos de tierra ocasionados por flujos de detritos, procesos dinámicos, factores principales de control, análisis de tendencias, Yigong. (es)

Downloads

Authors

  • Jun Li Institute of mountain hazards and environment, School of Civil Engineering, Sichuan University of Science & Engineering
  • Ningsheng Chen Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
  • Yuandi Zhao School of Civil Engineering, Sichuan University of Science & Engineering
  • Mei Liu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
  • Weiyu Wang School of Civil Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
A Catastrophic Landslide Triggered Debris Flow (CLDF) hazard with a scale of 0.3 billion m3 occurred in the Zhamunong gully on April 9th, 2000. It is of great scientific and engineering significance to study the main controlling factors and dynamic processes of this CLDF, and the future development trend of similar hazards. First, we collect the data of the prehazard precipitation, temperature and earthquake, as well as the seismic waves generated by the disaster. Second, we use multiple methods on the data, including the EPA and SPI computing methods, Fast Fourier transform (FFT), the engineering geological survey, the calculation method of landslide stability, the FLAC numerical simulation method and rock mechanics experiment, etc. Third, the processed data is analyzed, and the results are shown as follows: (1) The motivating factors of the 2000 CLDF were a long-term freeze-thaw cycle, a dry-wet cycle and an earthquake. It is reasonable that the Ms 4.8 earthquake was a direct inducing factor before the occurrence of the 2000 CLDF. (2) Based on the ground vibration spectrum recorded by the Linzhi seismic station, the dynamic processes of the 2000 LTDF have four processes, which are the joint and crack development process in the landslide, the crack fracture and sliding process, the landslide translating into the debris flow and the movement and deposition of the debris flow. (3) The density of the 2000 CLDF is 2.0 t·m-3, the average velocity of the 2000 CLDF is 30.12 m·s-1, and the discharge process of the 2000 CLDF first increases and then decreases. (4) Based on the adequately internal and external geological conditions, a CLDF of the Zhamunong gully may occur in the future. The research results are useful in establishing a foundation for further study on the dynamic mechanism of CLDFs and hazard reduction countermeasures.

Un deslizamiento de tierra ocasionó un flujo de detritos a una escala de 0.3 miles de millones de metros cúbicos en la hondonada de Zhamunong en el río Yigong, el 9 de abril de 2000. El estudio de los factores deteterminantes y las dinámicas del proceso de este desastre, al igual que el estudio de la tendencia a futuro de eventos similares, ha sido de gran importancia científica e ingenieril. Inicialmente, se recolectó la información relacionada con la precipitación, terremotos y temperatura antes del deslizamiento y la información de onda sísmica después del evento. Luego se realizó un acercamiento multidimensional a la información para encontrar los factores, los procesos dinámicos y la tendencia del deslizamiento de tierra que desencadenó un flujo de detritos en Zhamunong, y que incluyó el índice de precipitación regular y los métodos de cálculo de aceleración sísmica, transformada rápida de Fourier, estabilidad de un deslizamiento, el método de las diferencias finitas MacCormack-TVD y el método de simulación numérica FLAC. Los resultados muestran lo siguiente: (1) Los factores de control principal del deslizamiento fueron el ciclo a largo plazo de congelación y descongelación, el ciclo de humedad y sequía, y un terremoto de magnitud media. (2) Con base en el espectro de vibración del terreno registrado durante este evento por la estación sísmica de Linzhi, lasdinámicaspasanporeldesarrollodelprocesodeagrietamientoyarticulación,elprocesodeagrietamientodelas fracturasydeslizamiento,latraslacióndeldeslizamientodetierraenflujodedetritos,elmovimientoyladeposición de estos detritos. (3) La densidad y el promedio de velocidad son de 2.0 t·m-3 y 30.12 m·s-1, y la descarga se muestra con el proceso de primero incremento y luego disminución. (4) Eventos similares pueden ocurrir en la hondonada de Zhamunong a futuro. Los resultados de la investigación son útiles para establecer los cimientos de estudios posteriores en los mecanismos de dinámicas y en la reducción de contramedidas de deslizamienos de tierra ocasionados por flujos de detritos.

References

Chen, N. S., Li, J., Liu, L. H., Yang, C. L. & Liu, M. (2018). Post-earthquake denudation and its impacts on ancient civilizations in the Chengdu Longmenshan region, China. Geomorphology, 309, 51-59.

Chen, N. S., Tanoli, J. I., Hu, G. S., Wang, F. N., Yang, C. L., Ding, H. T., He, N. & Wang, T. (2016). Outlining a stepwise, multi-parameter debris flow monitoring and warning system: an example of application in Aizi Valley, China. Journal of Mountain Science, 13(9), 1527-1543.

Chen, N. S., Yang, L., Zhou, H. B., Deng, M. F., & Han D. (2014). Combined Impacts of Antecedent Earthquakes and Droughts on Disastrous Debris Flows. Journal of Mountain Science, 11(6),1507-1520.

Chen, N. S., Zhou, W., Yang, C. L., Hu, G. S., Gao, Y. C. & Han, D. (2010). The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content. Geomorphology, 121(3–4), 222-230.

Dammeier, F., Moore, J. R., Hammer, C., Haslinger, F., & Loew, S. (2016). Automatic detection of alpine rockslides in continuous seismic data using Hidden Markov Models. Journal of Geophysical Research Earth Surface, 121(2), 351-371.

Delaney, K. B. & Evans, S. G. (2015). The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling. Geomorphology, 246, 377-393.

Delgado, J., Garrido, J., López-Casado, C., Martino, S., & Peláez J. A. (2011) On far field occurrence of seismically induced landslides. Engineering Geology, 123(3), 204-213.

Deng, M. F., Chen, N. S., & Liu, M. (2017). Meteorological factors driving glacial till variation and the associated periglacial debris flows in Tianmo Valley, south-eastern Tibetan Plateau. Natural Hazards & Earth Systemences, 17(3), 345-356.

Evans, S. G. & Delaney, K. B. (2011). Characterization of the 2000 Yigong Zangbo River (Tibet) Landslide Dam and Impoundment by Remote Sensing. Lecture Notes in Earth Sciences, 133, 543-559.

Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M. & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth & Planetary Science Letters, 279(3–4), 222-229.

Hu, M. J., Pan, H. L., Zhu, C. Q. & Wang, F. W. (2015). High-speed ring shear tests to study the motion and acceleration processes of the Yigong landslide. Journal of Mountain Science, 12(6), 1534-1541.

Huang, R. Q, Chen, G. Q., Guo, F., Zhang, G. & Zhang, Y. (2016). Experimental study on the brittle failure of the locking section in a large-scale rock slide. Landslides, 13(3), 583-588.

Huang, R. Q. & Fan, X. X. (2013). The landslide story. Nature Geoscience, 6(5), 325-326.

Jing, F. U., Xiu-Li, D., Cong-Lie, Z. & Xuan, Z. (2008). Application of Lagrangian difference method based on shear strength reduction (in Chinese). Journal of Yangtze River Scientific Research Institute, 25(2), 58-58.

Kang, C., Chan, D., Su, F. H. & Cui, P. (2017). Runout and entrainment analysis of an extremely large rock avalanche—a case study of Yigong, Tibet, China. Landslides, 14(1), 123-139.

Larson, K. M., Bürgmannj, R., Bilham, R. & Freymueller, J. T. (1999). Kinematics of the India-Eurasia collision zone from GPS measurements. Journal of Geophysical Research Solid Earth, 104(B1), 1077-1093.

Lee, H. Y., Chung, S. L., Wang, J. R., Wen, D. J., Lo, C. H. & Yang, T. F. (2003). Miocene Jiali faulting and its implications for Tibetan tectonic evolution. Earth and Planetary Science Letters, 205(3-4), 185-194.

Li, J., Chen, N. S., Javed, I., & Han, D. (2018). The model for dilution process of landslide triggered debris flow —a case of Guanba river in Tibet southeastern plateau. Earth Sciences Research Journal, 22(2), 103-111.

Liu, N. (2000). On emergency treatment scheme for Yigong massive landslide and river blockage disaster in Tibet (in Chinese). Yangtze River, 31(9), 10-12.

Liu, W. & He, S. M. (2018). Dynamic simulation of a mountain disaster chain: landslides, barrier lakes, and outburst floods. Natural Hazards, 90(2), 757-775.

Lu, J. T. (2002). A Tentative Discussion on the Monitoring of the Yigong Landslide-blocked Lake with Satellite Remote Sensing Technique. Acta Geosicientia Sinica, 23(4), 363-368.

Mccubbine, J. C., Featherstone, W. E. & Kirby, J. F. (2017). Fast-Fourier-based error propagation for the gravimetric terrain correction. Geophysics, 82(4), G71-G76.

Ouyang, C. J., He, S. M., & Tang, C. (2015). Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Engineering Geology, 194, 62-72.

Ouyang, C. J., He, S. M., Xu, Q., Luo, Y. & Zhang, W. (2013). A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Computers & Geosciences, 52(1), 1-10.

Samodra, G., Hadmoko, D. S., Wicaksono, G. N., Adi, I. P., Yudinugroho, M., & Wibowo, S. B. (2018). The March 25 and 29, 2016 landslide-induced debris flow at Clapar, Banjarnegara, Central Java. Landslides, 15(5), 985-993.

Schmidt, J. L., Zeitler, P. K., Pazzaglia, F. J., Marissa, M. T., David, L. S. & Matthew F. (2015). Knickpoint evolution on the Yarlung river: Evidence for late Cenozoic uplift of the southeastern Tibetan plateau margin. Earth & Planetary Science Letters, 430, 448-457.

Shang, Y. J., Yang, Z. F., Li, L. H., Liu, D. & Wang, Y. (2003). A super-large landslide in Tibet in 2000: background, occurrence, disaster, and origin. Geomorphology, 54(3–4), 225-243.

Song J., Tang F., Deng Z., Xiao G. and Chen, W. (2013). Late Quaternary Movement Characteristic of Jiali Fault in Tibetan Plateau (in Chinese). Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6), 973-980.

Tewari, P. (2004). A Study on Soil Erosion in Pasighat Town (Arunachal Pradesh) India. Natural Hazards, 32(2), 257-275.

Wang, G. H. & Sassa, K. (2003). Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering Geology, 69(1–2), 109-125.

Wang, L., Chen, Z. Y., Wang, N. X., Sun, P., Yu, S., & Li, S. (2016). Modeling lateral enlargement in dam breaches using slope stability analysis based on circular slip mode. Engineering Geology, 209, 70-81.

Wang, S. Y. & Shi, Z. L. (1993). The relationship between the sensible radius and magnitude of earthquakes and its application: The symposium on Chinese seismic zonation (in Chinese). Beijing Seismological Press, Beijing, China, 89-96 pp.

Wang, T., Chen, X. Q., Li, K., Chen, J. & You, Y. (2018a). Experimental study of viscous debris flow characteristics in drainage channel with oblique symmetrical sills. Engineering Geology, 233, 55-62.

Wang, T., Chen, J. G., Chen, X. Q., You, Y., & Cheng, N. S. (2018b). Application of incomplete similarity theory to the estimation of the mean velocity of debris flows. Landslides, 15, 2083-2091.

Wang, X. L. & Li, J. C. (2017). A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study. Science China (Physics, Mechanics & Astronomy), 60(12), 124712.

Wang, Z. H. & Lu, J. T. (2002). Satellite monitoring of the Yigong landslide in Tibet, China. Proceedings of

SPIE-The International Society for Optical Engineering, 4814, 34-38.

Xu, Q., Shang, Y. J., Aschtheo, V., Wang, S. T., Zhang, Z. Y. & Dong, X. J. (2012). Observations from the large, rapid Yigong rock slide – debris avalanch. Revue Canadienne De Géotechnique, 49(5), 589-606.

Yu, Y. X. & Gao, M. T. (2001). Effects of the hanging wall and footwall on peak acceleration during the Chi-Chi Earthquake, Taiwan (In Chinese). Acta Seismologica Sinica, 23(6), 615-621.

Zhou, J. W., Cui, P., & Hao, M. H. (2016). Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Lan

How to Cite

APA

Li, J., Chen, N., Zhao, Y., Liu, M. and Wang, W. (2020). A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency. Earth Sciences Research Journal, 24(1), 71–82. https://doi.org/10.15446/esrj.v24n1.78094

ACM

[1]
Li, J., Chen, N., Zhao, Y., Liu, M. and Wang, W. 2020. A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency. Earth Sciences Research Journal. 24, 1 (Jan. 2020), 71–82. DOI:https://doi.org/10.15446/esrj.v24n1.78094.

ACS

(1)
Li, J.; Chen, N.; Zhao, Y.; Liu, M.; Wang, W. A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency. Earth sci. res. j. 2020, 24, 71-82.

ABNT

LI, J.; CHEN, N.; ZHAO, Y.; LIU, M.; WANG, W. A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency. Earth Sciences Research Journal, [S. l.], v. 24, n. 1, p. 71–82, 2020. DOI: 10.15446/esrj.v24n1.78094. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/78094. Acesso em: 28 mar. 2025.

Chicago

Li, Jun, Ningsheng Chen, Yuandi Zhao, Mei Liu, and Weiyu Wang. 2020. “A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency”. Earth Sciences Research Journal 24 (1):71-82. https://doi.org/10.15446/esrj.v24n1.78094.

Harvard

Li, J., Chen, N., Zhao, Y., Liu, M. and Wang, W. (2020) “A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency”, Earth Sciences Research Journal, 24(1), pp. 71–82. doi: 10.15446/esrj.v24n1.78094.

IEEE

[1]
J. Li, N. Chen, Y. Zhao, M. Liu, and W. Wang, “A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency”, Earth sci. res. j., vol. 24, no. 1, pp. 71–82, Jan. 2020.

MLA

Li, J., N. Chen, Y. Zhao, M. Liu, and W. Wang. “A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency”. Earth Sciences Research Journal, vol. 24, no. 1, Jan. 2020, pp. 71-82, doi:10.15446/esrj.v24n1.78094.

Turabian

Li, Jun, Ningsheng Chen, Yuandi Zhao, Mei Liu, and Weiyu Wang. “A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency”. Earth Sciences Research Journal 24, no. 1 (January 1, 2020): 71–82. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/78094.

Vancouver

1.
Li J, Chen N, Zhao Y, Liu M, Wang W. A catastrophic landslide triggered debris flow in China’s Yigong: factors, dynamic processes, and tendency. Earth sci. res. j. [Internet]. 2020 Jan. 1 [cited 2025 Mar. 28];24(1):71-82. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/78094

Download Citation

CrossRef Cited-by

CrossRef citations16

1. Tiantian Zhang, Yueping Yin, Bin Li, Yang Gao, Meng Wang. (2022). Characteristics and dynamic analysis of the October 2018 long-runout disaster chains in the Yarlung Zangbo River downstream, Tibet, China. Natural Hazards, 113(3), p.1563. https://doi.org/10.1007/s11069-022-05358-z.

2. Xianmin Wang, Jing Yin, Menghan Luo, Haifeng Ren, Jing Li, Lizhe Wang, Dongdong Li, Guojun Li. (2023). Active High-Locality Landslides in Mao County: Early Identification and Deformational Rules. Journal of Earth Science, 34(5), p.1596. https://doi.org/10.1007/s12583-021-1505-0.

3. Jian Guo, Guodong Wang, Yao Li. (2025). Enhancing system kinetics through size segregation in granular materials. Powder Technology, 454, p.120706. https://doi.org/10.1016/j.powtec.2025.120706.

4. Zili Dai, Kai Xu, Fawu Wang, Hufeng Yang, Shiwei Qin. (2021). Numerical Investigation on the Kinetic Characteristics of the Yigong Debris Flow in Tibet, China. Water, 13(8), p.1076. https://doi.org/10.3390/w13081076.

5. Tiantian Zhang, Bin Li, Yang Gao, Haoyuan Gao, Yueping Yin. (2023). Massive glacier-related geohazard chains and dynamics analysis at the Yarlung Zangbo River downstream of southeastern Tibetan Plateau. Bulletin of Engineering Geology and the Environment, 82(11) https://doi.org/10.1007/s10064-023-03423-w.

6. Guisheng Hu, Xiangzhen Xia, Shufeng Tian, Ruiqi Li, Mahfuzur Rahman, Muhib Ullah Khan. (2024). WITHDRAWN: Inventory and distribution patterns of debris flow gullies in the Lhasa-Linzhi section of Sichuan-Tibet Railway. Natural Hazards Research, https://doi.org/10.1016/j.nhres.2024.01.003.

7. Guisheng Hu, Xiangzhen Xia, Shufeng Tian. (2025). Disaster attributes and distribution laws of debris flows in the upper Parlung Zangbo River. Natural Hazards, https://doi.org/10.1007/s11069-025-07221-3.

8. Jian Guo, Yifei Cui, Wenjie Xu, Wei Shen, Tonglu Li, Shujian Yi. (2022). A novel friction weakening-based dynamic model for landslide runout assessment along the Sichuan-Tibet Railway. Engineering Geology, 306, p.106721. https://doi.org/10.1016/j.enggeo.2022.106721.

9. Zi-peng Qin, Yuan-ming Lai, Yan Tian, Ming-yi Zhang. (2021). Effect of freeze-thaw cycles on soil engineering properties of reservoir bank slopes at the northern foot of Tianshan Mountain. Journal of Mountain Science, 18(2), p.541. https://doi.org/10.1007/s11629-020-6215-z.

10. Jinmin Zhang, Wu Zhu, Yiqing Cheng, Zhenhong Li. (2021). Landslide Detection in the Linzhi–Ya’an Section along the Sichuan–Tibet Railway Based on InSAR and Hot Spot Analysis Methods. Remote Sensing, 13(18), p.3566. https://doi.org/10.3390/rs13183566.

11. LUIS CARLOS LEGUIZAMÓN BARRETO, JULY ROJAS. (2021). A review of the relation between climate variability and mass removal processes. Ingeniería Solidaria, 17(1), p.1. https://doi.org/10.16925/2357-6014.2021.01.03.

12. Huiying Wang, Ping Wang, Gang Hu, Yukui Ge, Renmao Yuan. (2021). An Early Holocene river blockage event on the western boundary of the Namche Barwa Syntaxis, southeastern Tibetan Plateau. Geomorphology, 395, p.107990. https://doi.org/10.1016/j.geomorph.2021.107990.

13. Yingfang Zhu, Juyang Liao, Wei Gong, Huili Wu, Yaqi Huang, Yan Liu, Meifang Zhao, Upaka Rathnayake. (2022). Air Pollutants Sources in Winter in Chang-Zhu-Tan Region of China. Advances in Meteorology, 2022, p.1. https://doi.org/10.1155/2022/9717192.

14. Xi Xu, Xiuli Du, Wei Wu. (2024). Recent Geotechnical Research at BOKU. Springer Series in Geomechanics and Geoengineering. , p.265. https://doi.org/10.1007/978-3-031-52159-1_17.

15. Guisheng Hu, Xiangzhen Xia, Shufeng Tian, Zhiquan Yang. (2025). Spatial patterns and influencing factors of debris flows in the middle Yarlung Zangbo River on the Tibetan Plateau. Bulletin of Engineering Geology and the Environment, 84(4) https://doi.org/10.1007/s10064-025-04203-4.

16. Jixin Liu, Changbao Guo, Tianye Deng, Sanshao Ren. (2023). Investigation of the Deterioration of Basu Granite Mechanical Properties Caused by Freeze–Thaw Cycles in High-Altitude Mountains in the Eastern Part of the Tibetan Plateau, China. Sustainability, 16(1), p.319. https://doi.org/10.3390/su16010319.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 12
  • Scopus - Citation Indexes: 15
  • Usage
  • SciELO - Full Text Views: 231
  • SciELO - Abstract Views: 26
  • Captures
  • Mendeley - Readers: 16

Article abstract page views

955

Downloads