Published
Effects of granular shape on shear modulus and damping ratio of gravel
Efectos de la forma granular sobre el módulo de corte y la relación de amortiguamiento de la grava
DOI:
https://doi.org/10.15446/esrj.v23n1.78727Keywords:
Gravel, Granule shape, Shear modulus, Damping ratio (en)Grava, Forma de gránulo, Módulo de corte, Relación de amortiguación (es)
Downloads
The effects of the consolidation ratio, effective confining pressure, gravel content, and granule breakage on the shear modulus and damping ratio of gravel have been extensively researched in recent years. However, studies on the effect of the granular shape are rare. Thus, under different confining pressures, dynamic triaxial tests were performed on gravel specimens to investigate the effect of granular shape on the shear modulus and damping ratio of gravel specimens by using a multifunctional triaxial testing instrument. The samples consisted of two kinds of gravel with the same grain composition and relative density of 45%. The test results indicate that, when the confining pressure and shear strain amplitude exceed 300 kPa and 7×10-4, respectively, gravel with a round granular shape has a higher shear modulus compared to an angular shape. Conversely, when the shear strain amplitude exceeds 2×10-4, the damping ratio of angular gravel exceeds that of round granules.
Los efectos de la relación de consolidación, la presión de confinamiento efectiva, el contenido de grava y la rotura de gránulos en el módulo de corte y la relación de amortiguación de la grava se han investigado ampliamente en los últimos años. Sin embargo, los estudios sobre el efecto de la forma granular son escasos. Por lo tanto, bajo diferentes presiones de confinamiento, se realizaron pruebas triaxiales dinámicas en muestras de grava para investigar el efecto de la forma granular en el módulo de corte y la relación de amortiguamiento de las muestras de grava utilizando un instrumento de prueba triaxial multifuncional. Las muestras consistieron en dos tipos de grava con la misma composición de grano y una densidad relativa del 45%. Los resultados de la prueba indican que, cuando la presión de confinamiento y la amplitud de tensión de corte superan los 300 kPa y 7×10-4, respectivamente, la grava con una forma granular redonda tiene un módulo de corte más alto en comparación con una forma angular. A la inversa, cuando la amplitud de la tensión de cizallamiento excede de 2×10-4, la relación de amortiguamiento de la grava angular excede la de los gránulos redondos.
References
Delfosse-Ribay, E., Djeran-Maigre, I., Cabrillac, R., & Gouvenot, D. (2004). Shear modulus and damping ratio of grouted sand. Soil Dynamics and Earthquake Engineering, 24, 461-471.
Hardin, B.O., & Kalinski, M.E. (2005). Estimating the shear modulus of gravelly soils. Journal of Geotechnical and Geoenvironmental Engineering, 131, 867-875.
Ling, H., Fu, H., & Cai, Z.Y. (2009). Experimental study on dynamic deformation behaviors of dam materials. Chinese Journal of Geotechnical Engineering, 31, 1920-1924.
Ling, X. Z., Zhang, F., Li, Q. L., An, L. S., & Wang, J. H. (2015). Dynamic shear modulus and damping ratio of frozen compacted sand subjected to freeze–thaw cycle under multi-stage cyclic loading. Soil Dynamics and Earthquake Engineering, 76, 111-121.
Liu, D., Xie, T. T., Ma, G., & Chang, X. L. (2011). Numerical Simulation of True Triaxial Test for Behavior of Rockfill Based on Grain Shape. Water Resources and Power, 29, 68-72.
Liu, H. L., Yang, G., Chen, Y. M. (2010). Experimental study of factors influencing dynamic shear modulus and damping ratio of dam inverted filler. Rock and Soil Mechanics, 31, 2030-2034.
Meidani, M., Shafiee, A., & Habibagahi, G. (2008). Granule shape effect on the shear modulus and damping ratio of mixed gravel and clay. Iranian Journal of Science and Technology, Transaction B: Engineering, 32 (B5), 501-518.
Qian, X., Gray, D., & Woods, R. (1993). Voids and Granulometry effects on shear modulus of unsaturated sands. Journal of Geotechnical and Geoenvironmental Engineering, 119, 295-314.
Rollins, K. M., Evans, M. D., & Diehl, N. B. (1998). Shear modulus and damping relationships for gravels. Journal of Geotechnical and Geoenvironmental Engineering, 124, 396-405.
Sahaphol, T., & Miura, S. (2005). Shear moduli of volcanic soils. Soil Dynamics and Earthquake Engineering, 25, 157-165.
Sas, W., Gabryś, K., & Szymański, A. (2015). Effect of Time on Dynamic Shear Modulus of Selected Cohesive Soil of One Section of Express Way No. S2 in Warsaw. Acta Geophysica, 63, 398-413.
Sun, J., Gong, M. S., & Tao, X. X. (2013). Dynamic shear modulus of undisturbed soil under different consolidation ratios and its effects on surface ground motion. Earthquake Engineering and Engineering Vibration, 12, 561-568.
Sun. J., Yuan, X. M., & Gong, M. S. (2011). The Effect of Nonlinear Dynamic Shear Modulus under Anisotropic Consolidation on Response Spectrum of Soil Layer. Advanced Materials Research, 243, 2250-2253.
Tong, L., & Wang, Y. Hsing. (2015). DEM simulations of shear modulus and damping ratio of sand with emphasis on the effects of particle number, particle shape, and aging. Acta Geotechnica, 10, 117-130.
Wang, A. P., Geng, Y., & Jin, J. (2005). Study on dynamic characteristics of rock filling materials of Zhangfeng reservoir. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 26, 16-18.
Wang, R. H., Jia, B., & Deng, A. F. (2006). Dynamic triaxial testing study on dynamic characteristics of sandy pebble soil. Chinese Journal of Rock Mechanics and Engineering, 25(Supp.2), 4059-4064.
Wang, Z. J., Luo, Y. S., Guo, H., & Tian, H. (2012). Effects of initial deviatoric stress ratios on dynamic shear modulus and damping ratio of undisturbed loess in China. Engineering Geology, 143, 43-50.
Wang, Z. J., Luo, Y. S., & Guo, H. (2011). Effects of Complex Initial Stress State Parameters on Dynamic Shear Modulus of Loess. Advanced Materials Research, 243, 2601-2606.
Wan, X. L., & Yang, D. L. Experimental Study on Dynamic Shear Modulus and Damping Ratio of Soft Soils in Binhu New District of Hefei. Applied Mechanics and Materials, 405, 1957-1960.
Wichtmann, T., & Triantafyllidis, T. (2009). Influence of the Grain-Size Distribution Curve of Quartz Sand on the Small Strain Shear Modulus Gmax. Journal of Geotechnical and Geoenvironmental Engineering, 135, 1404-1418.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2019 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.