Published
Fine Imaging by Using Advanced Detection of Reflected Waves in Underground Coal Mine
Imágenes finas mediante el uso de detección avanzada de ondas reflejadas en una mina subterránea de carbón
DOI:
https://doi.org/10.15446/esrj.v23n1.78750Keywords:
Mine roadway, Advanced detection, Polarization analysis, Fine imaging, (en)Carretera de minas, detección avanzada, análisis de polarización, imágenes finas, (es)
Downloads
Safety of the mine roadway constructions is controlled by geological disasters such as faults, goaves and so on. The advanced prediction has become an in-demand topic, and advanced detection method of the reflected wave is a crucial technology for advanced prediction of geological anomalies. However, due to the influence of the complex near-source seismic wavefield in the coal mine roadway, the result of wavefield separation and migration imaging is not accurate, which lead to the fact that the fine imaging of geological anomaly is difficult. A comparative analysis of wavefield separation method of kinematics and dynamics is carried out in this paper to solve this problem. A factor of principal polarization direction is introduced according to “the orthogonal difference between the propagation direction of P-wave and S-wave and the vibration direction of particle” starting from the real-time polarization analysis from three-component seismic signals. By the factor, a modified function is constructed and integrated into pre-stack diffraction migration, which put forward the polarization migration method that incorporates wavefield separation with migration imaging. The results of physical simulation and field survey in Xiangyuan coal mine in western China are as follows: The fine imaging by using advanced detection of the reflected waves in underground coal mine can be achieved by using polarization migration in linear observation system and the polarization migration has the effect of enhancing the spatial resolution.
La seguridad de las construcciones de carreteras de mina está controlada por desastres geológicos, como fallas, obstrucciones, etc. La predicción avanzada se ha convertido en un tema de demanda, y el método de detección avanzada de la onda reflejada es una tecnología crucial para la predicción avanzada de anomalías geológicas. Sin embargo, debido a la influencia del complejo campo de ondas sísmicas de fuente cercana en la carretera de la mina de carbón, el resultado de la separación de los campos de onda y la imagen de migración no es preciso, lo que lleva al hecho de que es difícil obtener imágenes finas de anomalías geológicas. En este trabajo se realiza un análisis comparativo del método de cinemática y dinámica de separación de campos de onda para resolver este problema. Un factor de la dirección de polarización principal se introduce según "la diferencia ortogonal entre la dirección de propagación de la onda P y la onda S y la dirección de vibración de la partícula" a partir del análisis de polarización en tiempo real desde señales sísmicas de tres componentes. Por el factor, una función modificada se construye e integra en la migración de difracción de pila previa, lo que presenta el método de migración de polarización que incorpora la separación del campo de onda con la imagen de migración. Los resultados de la simulación física y el estudio de campo en la mina de carbón Xiangyuan en el oeste de China son los siguientes: La imagen fina mediante el uso de detección avanzada de las ondas reflejadas en una mina de carbón subterránea se puede lograr mediante el uso de la migración de polarización en un sistema de observación lineal y la migración de polarización tiene el efecto de mejorar la resolución espacial.
References
Bohlen, T., Lorang, U., Rabbel, W., Müller, C., Giese, R., Lüth, S., & Jetschny, S. (2007). Rayleigh-to-shear wave conversion at the tunnel face from 3D-FD. Geophysics, 72(6), 67-79.
Borm, G., Giese, R., & Otto, P. (2001). Integrated seismic imaging system for geological prediction ahead in underground construction. Proceedings-Rapid Excavation and Tunneling Conference.
Cheng, J. L., Li, F., Peng, S. P., & Sun, X. Y. (2014). Research progress and development direction on advanced detection in mine roadway working face using geophysical methods. Journal of China Coal Society, 39(8), 1742-1750.
Dickmann, T. &, Sander, B. K. (1996). Drivage concurrent tunnel seismic prediction (TSP): Result from Vereina north tunnel mega-project and Piora pilot gallery. Feisbau, 1996(6), 406-411.
He, Z. Y. (2008). Design and application of data processing system for multi component seismic exploration in coal mine. Beijing: China University of Mining and Technology (Beijing).
Inazaki, T. (1999). Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face. The Leading Edge, 18(12), 1429-1430.
Liang, Q. H. &, Song, J. (2009). Advanced detection theory and experimental research of multi-component seismic exploration in mine. Journal of Central South University (Science and Technology), 40(5), 1392-1398.
Liu, S. D., Guo, L. Q., & Zhang, P. S. (2006). Experiment and application study of fore detecting by MSP method for geological structure in laneway. Chinese Journal of Engineering Geophysics, 3(6), 437-442.
Liu, S. D., Liu, J., & Yue, J. H. (2014). Development status and key problems of Chinese mining geophysical technology. Coal Science and Technology, 39(1), 19-25.
Liu, S. D. &, Wang, B. (2016). Mine seismic method and technology. Xuzhou: China University of Mining and Technology press.
Lüth, S., Buske, S., Giese, R., & Goertz, A. (2005). Fresnel volume migration of multicomponent data. Geophysics, 70(6), 121-129.
Otto, R., BuRon, E., Bretterebner, H., & Schwab, P. (2002). The application of TRT at the Unterwald tunnel. Felsbau, 20(2), 51-56.
Reyes-Mendoza, O., Marino-Tapia, I., Herrera-Silveira, J., Ruiz-Martinez, G., Enriquez, C., & Largier, J. L., (2016). The effects of wind on upwelling off cabo catoche. Journal of Coastal Research, 32(3), 638-650.
Shen, H. Y. (2006). Reflected-Wave Tunnel Seismic Prediction. Xian: Changan University.
Wang, B., Liu, S. D., Zhou, F. B., Lu, T., Huang, L. Y., & Gao, L. J. (2016). Polarization migration of three-component reflected waves under small migration aperture condition. Acta Geodynamica et Geomaterialia, 13(1), 1-12.
Zeng, Z. H. (1994). Prediction ahead of the tunnel face by the seismic reflection methods. Chinese Journal of Geophysics, 37(2), 268-271.
Zhang, P. S. &, Hu, X. W. (2015). Research status on technology of advanced detection by electromagnetic methods in mine laneway. Coal Science and Technology, 43(1), 112-115, 119.
Zhang, P. S. &, Wu, J. S. (2006). Research and analysis of forward prediction technology using seismic reflection wave in tunnel and laneway in China. Advances in Earth Science, 21(10), 1033-1038.
Zhong, S. H., Sun, H. Z., & Wang, R. (2012). Land sonar method. Beijing: Science and technology of China press.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Bo Wang, Biao Jin, Lanying Huang, Shengdong Liu, Huachao Sun, Jinsuo Liu, Xin Ding, Shengcheng Wang. (2020). A Hilbert polarization imaging method with breakpoint diffracted wave in front of roadway. Journal of Applied Geophysics, 177, p.104032. https://doi.org/10.1016/j.jappgeo.2020.104032.
2. Miao Yu, Xiang Li, Guanhua Li. (2021). Detection method of dissolved oxygen saturation in ecological water in coastal cities. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06867-0.
3. Bo Wang, Wanyong Qiu, Shengdong Liu, Huachao Sun, Xin Ding, Biao Jin, Zhendong Zhang. (2020). Supercritical CO2 source for underground seismic exploration. Journal of King Saud University - Science, 32(2), p.1731. https://doi.org/10.1016/j.jksus.2020.01.010.
4. Dingchao Chen, Xiangyu Wang, Jianbiao Bai, Jianfei Lu, Bowen Wu, Xin Li, Yan Li, Feiteng Zhang, Menglong Li. (2025). Advanced detection methods for tunnels and roadways: a review. Measurement Science and Technology, 36(1), p.012007. https://doi.org/10.1088/1361-6501/ad98b2.
5. Lanying Huang, Shengcheng Wang, Xuejuan Song. (2020). Three-component channel wave characteristics and fine imaging of erosion zone. Journal of King Saud University - Science, 32(1), p.1197. https://doi.org/10.1016/j.jksus.2019.10.012.
6. Yongxiao Cao, Xianglong Zhang, Zihan Chen, Zhixiao Zhang, Huaibin Wei. (2022). Construction of pollution risk early warning model for urban drinking water supply chain. Water Supply, 22(12), p.8540. https://doi.org/10.2166/ws.2022.353.
7. Pengfei Zhou, Kai Li, Chao Fu, Xiaobin Xu, Zhijun Geng, Weimin Yang, Yi Zhang, Shuai Cao. (2023). Random Noise Attenuation in Tunnel Based on EMD-T-FSS. Geotechnical and Geological Engineering, 41(1), p.27. https://doi.org/10.1007/s10706-022-02259-7.
8. Ping Huang, Wei Huang, Yongliang Zhang, Shibin Tang. (2021). Simulation study on sectional ventilation of long-distance high-temperature roadway in mine. Arabian Journal of Geosciences, 14(16) https://doi.org/10.1007/s12517-021-07880-z.
9. Lanying Huang, Shengcheng Wang, Xuejuan Song. (2020). Comparison study of three-component polarization analysis methods for seismic advanced detection in the roadway. Arabian Journal of Geosciences, 13(23) https://doi.org/10.1007/s12517-020-06243-4.
10. Ghanem Brahmi, Mohammed Bougara. (2023). Atténuation du ground roll par le filtre surface wave atténuation : application pour le cas des données sismiques. Boletín de Ciencias de la Tierra, (52), p.29. https://doi.org/10.15446/rbct.105227.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2019 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.