Published

2019-01-01

The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin

El campo térmico magma y la acumulación de gas a nivel superficial de reservorios de gas en las partes del Medio Oriente de la Cuenca de Qinshui

DOI:

https://doi.org/10.15446/esrj.v23n1.78805

Keywords:

Magma, Thermal activity, Magmatic heating, Water movement channel fracture-crack, Network system, Hierarchical configuration, (en)
Magma, Actividad térmica, Calefacción magmática, Movimiento de agua en canales de Fractura-grieta, Sistema de red, Configuración jerárquica, (es)

Downloads

Authors

  • Ke Sun School of Energy resource, China University of Geosciences(Beijing), Beijing, 100083, China
  • Shuheng Tang School of Energy resource, China University of Geosciences(Beijing), Beijing, 100083, China
  • Songhang Zhang School of Energy resource, China University of Geosciences(Beijing), Beijing, 100083, China
  • Zhaodong Xi School of Energy resource, China University of Geosciences(Beijing), Beijing, 100083, China
  • Jun Li College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China

In this study, the metal-non-metal mineral gas-water hydrothermal concept is used to analyze the movement channels of magmatic heating water. Further, the concept of fractures-faults-cracks microfissures hierarchical configuration of the movement channels of magmatic heating water is proposed. In addition, the magma thermal field formed by magmatic heating water movement is studied and analyzed. Based on the basin simulation method, which is combined with the paleo-tectonic evolution analysis and restoration of the ancient burial depth in the middle-eastern parts of the Qinshui Basin, the tectonic evolution history, thermal evolution history, and hydrocarbon generation and exhaustion history of tight gas reservoirs in the Yushe-Wuxiang block in the middle-eastern parts of the Qinshui Basin have been investigated. On the basis of the theories and methods that are proposed in this study, the hierarchical configuration of fractures-faults-cracks microfissures movement channels of magmatic heating water in the Yushe-Wuxiang block in the middle-eastern parts of the Qinshui Basin was studied and analyzed. It is observed that the magmatic heating water rises to the source formation through the movement channels of hierarchical configuration, heats the source rocks, accelerates the evolution of the source rock in the shallow layer, and forms a tight gas reservoir. 

En este estudio, el concepto de mineral metal-no-metal hidrotermal gas-agua se utiliza para analizar los canales de movimiento del agua de calentamiento magmático. También se propone el concepto de configuración jerárquica de las microfisuras fracturas-fallas-grietas de los canales de movimiento del agua de calentamiento magmático. Además, se estudia y analiza el campo térmico de magma formado por el movimiento de agua de calentamiento magmático. Basado en el método de simulación de la cuenca, que se combina con el análisis de la evolución paleotectónica y la restauración de la profundidad de enterramiento en las partes del Medio Oriente de la Cuenca Qinshui, se ha investigado la historia de evolución tectónica, la historia de evolución térmica y la historia de generación y agotamiento de hidrocarburos en los depósitos de gases en el bloque Yushe-Wuxiang en las partes del medio oriente de la cuenca Qinshui. Sobre la base de las teorías y métodos que se proponen en este estudio, se analizó la configuración jerárquica de los canales de movimiento de microfisuras fracturas-fallas-grietas del agua de calentamiento magmática en el bloque Yushe-Wuxiang en las partes medio-orientales de la cuenca Qinshui. Se observa que el agua de calentamiento magmático sube a la formación de la fuente a través de los canales de movimiento de configuración jerárquica, calienta las rocas de origen, acelera la evolución de la roca de origen en la capa superficial y forma un depósito de gas estrecho.

References

Aarnes, I., Planke, S., Trulsvik, M., & Svensen, H. (2015). Contact metamorphism and thermogenic gas generation in the Vøring and Møre basins, offshore Norway, during the Paleocene–Eocene thermal maximum. Journal of the Geological Society, 172(5), 588-598. DOI: 10.1144/jgs2014-098.

Alalade, B., & Tyson, R. V. (2013). Influence of igneous intrusions on thermal maturity of Late Cretaceous shales in the Tuma well, Chad Basin, NE Nigeria. Journal of African Earth Sciences, 77, 59-66. DOI: 10.1016/j.jafrearsci.2012.09.006.

Alberdi-Genolet, M., Cavallaro, A., Hernandez, N., Crosta, D. E., & Martinez, L. (2013). Magmatic events and sour crude oils in the Malargüe area of the Neuquén Basin, Argentina. Marine & Petroleum Geology, 43, 48-62. DOI: 10.1016/j.marpetgeo.2012.11.005.

Blažić, L., & Moreau, J. (2016). Discovery of Lower Cretaceous hydrothermal vent complexes in a late rifting setting, southern North Sea: insights from 3D imaging. Journal of the Geological Society, 174(2), 233-241. DOI: 10.1144/jgs2015-155.

Cukur, D., Horozal, S., Kim, D. C., Lee, G. H., Han, H. C., & Kang, M. H. (2010). The distribution and characteristics of the igneous complexes in the northern East China Sea Shelf Basin and their implications for hydrocarbon potential. Marine Geophysical Researches, 31(4), 299-313. DOI: 10.1007/s11001-010-9112-y.

Frieling, J., Svensen, H. H., Planke, S., Cramwinckel, M. J., Selnes, H., & Sluijs, A. (2016). Thermogenic methane release as a cause for the long duration of the PETM. Proceedings of the National Academy of Sciences of the United States of America, 113(43), 12059-12064. DOI: 10.1073/pnas.1603348113.

Gao, Y., & Liu, L. (2003). Brief introduction of effect of magma intrusion activity on sandstone. Geological Science and Technology Information, 22(2), 13-16. DOI: 10.3969/j.issn.1000-7849.2003.02.003. (In Chinese)

Hakimi, M. H., Nasher, M. A., Saeed, S. A., Al-Hakame, H., Al-Moliki, T., & Al-Sharabi, K. Q. (2017). Metamorphosis of marine organic matter in the jurassic deposits from Sharab area, Taiz Governorate of southwestern Yemen: Thermal effect of tertiary volcanic rocks. Journal of the Geological Society of India, 89(3), 325-330. DOI: 10.1007/s12594-017-0607-x.

Iyer, K., Schmid, D. W., Planke, S., & Millett, J. (2017). Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth & Planetary Science Letters, 467, 30-42. DOI: 10.1016/j.epsl.2017.03.023.

Iyer, K., Svensen, H., & Schmid, D. W. (2018). SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions. Geoscientific Model Development, 11(1), 43-60. DOI: 10.5194/gmd-11-43-2018.

Lee, G. H., Kwon, Y. I., Yoon, C. S., Kim, H. J., & Yoo, H. S. (2006). Igneous complexes in the eastern Northern South Yellow Sea Basin and their implications for hydrocarbon systems. Marine & Petroleum Geology, 23(6):631-645. DOI:10.1016/j.marpetgeo.2006.06.001.

Li, J., Li, Z., Qiu, N., Zou, Y., Yu, J., & Liu, J. (2016). Carboniferous-Permian abnormal thermal evolution of the Tarim basin and its implication for deep structure and magmatic activity. Chinese Journal of Geophysics, 59(9), 3318-3329. DOI:10.6038/cjg2016096. (In Chinese)

Muirhead, D. K., Bowden, S. A., Parnell, J., & Schofield, N. (2017). Source rock maturation owing to igneous intrusion in rifted margin petroleum systems. Journal of the Geological Society, 174(6), 979-987. DOI: 10.1144/jgs2017-011.

Peace, A., McCaffrey, K., Imber, J., Hobbs, R., van Hunen, J., & Gerdes, K. (2017). Quantifying the influence of sill intrusion on the thermal evolution of organic‐rich sedimentary rocks in nonvolcanic passive margins: an example from ODP 210‐1276, offshore Newfoundland, Canada. Basin Research, 29(3), 249-265. DOI: 10.1111/bre.12131.

Polteau, S., Hendriks, B. W. H., Planke, S., Ganerød, M., Corfu, F., Faleide, J. I., . . . Myklebust, R. (2016). The Early Cretaceous Barents Sea Sill Complex: Distribution, 40 Ar/ 39 Ar geochronology, and implications for carbon gas formation. Palaeogeography Palaeoclimatology Palaeoecology. 441(1):83-95. DOI: 10.1016/j.palaeo.2015.07.007.

Polyansky, O. P., Reverdatto, V. V., Khomenko, A. V., & Kuznetsovab E. N. (2003). Modeling of fluid flow and heat transfer induced by basaltic near-surface magmatism in the Lena-Tunguska petroleum basin (Eastern Siberia, Russia). Journal of Geochemical Exploration, 78-79, 687-692. DOI: 10.1016/S0375-6742(03)00079-7.

Rateau, R., Schofield, N., & Smith, M. (2013). The potential role of igneous intrusions on hydrocarbon migration, West of Shetland. Petroleum Geoscience, 19, 259-272. DOI: 10.1144/petgeo2012-035.

Ren, Z., Xiao, H., Liu, L., & Zhang, S. (2005). Determination of Mesozoic tectonic heat event in Qinshui basin. Petroleum Exploration and Development, 32(1), 43-47. DOI:10.3321/j.issn:1000-0747.2005.01.011. (In Chinese)

Ren, Z. (2000). Comparison of thermal evolution history in sedimentary basins, north China. Oil & Gas Geology, 21(1), 33-37. DOI:10.3321/j.issn:0253-9985.2000.01.009. (In Chinese)

Rodriguez, F., Villar, H., & Baudino, R. (2007). Hydrocarbon Generation, Migration, and Accumulation Related to Igneous Intrusions: An Atypical Petroleum System From the Neuquen Basin of Argentina. SPE-107926-MS. DOI: 10.2118/107926-MS.

Salmachi, A., Rajabi, M., Reynolds, P., Yarmohammadtooski, Z., & Wainman, C. (2016). The effect of magmatic intrusions on coalbed methane reservoir characteristics: A case study from the Hoskissons coalbed, Gunnedah Basin, Australia. International Journal of Coal Geology, 165, 278-289. DOI:10.1016/j.coal.2016.08.025.

Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., . . . Hole, M. (2017). Regional magma plumbing and emplacement mechanisms of the Faroe‐Shetland Sill Complex: implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29(1), 41-63. DOI:10.1111/bre.12164.

Senger, K., Planke, S., Polteau, S., Ogata, K., & Svensen, H. (2014). Sill emplacement and contact metamorphism in a siliciclastic reservoir on Svalbard, Arctic Norway. Norsk Geologisk Tidsskrift, 94, 155-169.

Spacapan, J. B., Palma, J. O., Galland, O., Manceda, R., Rocha, E., & Odorico, A. D. (2018). Thermal impact of igneous sill-complexes on organic-rich formations and implications for petroleum systems: A case study in the northern Neuquén Basin, Argentina. Marine & Petroleum Geology, 91, 519-531. DOI: 10.1016/j.marpetgeo.2018.01.018.

Sydnes, M., Fjeldskaar, W., Løtveit, I. F., Grunnaleite, I., & Cardozo, N. (2018). The importance of sill thickness and timing of sill emplacement on hydrocarbon maturation. Marine & Petroleum Geology, 89(2), 500-514. DOI: 10.1016/j.marpetgeo.2017.10.017.

Tian, W., Jiang, Z., Pang, X., Meng, Q., & Gu, L. (2005). Study of the thermal modeling of magma intrusion and its effects on the thermal evolution patterns of source rocks. Journal of Southwest Petroleum Institute, 27(1), 12-16. DOI:10.3863/j.issn.1674-5086.2005.01.004. (In Chinese)

Wang, D., & Manga, M.. (2015). Organic matter maturation in the contact aureole of an igneous sill as a tracer of hydrothermal convection. Journal of Geophysical Research Solid Earth, 120, 4102-4112. DOI: 10.1002/2015JB011877.

Wei, S., Shen, Y., & Yang, X. (2017). Assessment of coal measures shale gas reservoir features in Yushe-Wuxiang block, Qinshui basin. Coal Geology of China, 29(8), 25-38. DOI:10.3969/j.issn.1674-1803.2017.08.05. (In Chinese)

Witte, J., Bonora, M., Carbone, C., & Oncken, O. (2012). Fracture evolution in oil-producing sills of the Rio Grande Valley, northern Neuquén Basin, Argentina. AAPG Bulletin, 96(7), 1253-1277. DOI:10.1306/10181110152.

Xu, H., Fang, L., Zhang, X., Hu, J., & Zhu, H. (2006). Characteristics of early permian magmatic rocks and their impact on hydrocarbon accumulation in tarim basin. Acta Geoscientica Sinica, 27(3), 235-240. DOI:10.3321/j.issn:1006-3021.2006.03.007. (in Chinese)

Yuan, J. (1985). Gitology. Beijing: Geological Press. 72-103. (In Chinese)

Zanella, A., Cobbold, P. R., Ruffet, G., & Leanza, H. A. (2015). Geological evidence for fluid overpressure, hydraulic fracturing and strong heating during maturation and migration of hydrocarbons in Mesozoic rocks of the northern Neuquén Basin, Mendoza Province, Argentina. Journal of South American Earth Sciences, 62, 229-242. DOI: 10.1016/j.jsames.2015.06.006.

Zhang, Q., Jin, W., Li, C., & Jiao, S. (2014). "Magma Thermal Field" and Its metallogenic significance (2). Gansu Geology, 23(2), 1-20. (In Chinese)

Zhang, Q., Jin, W., Wang, J., Li, W., Li, C., Jiao, S., Shao, G. (2016). Relationship between magma-thermal field and hydrocarbon accumulation. Progress in Geophysics, 31(4), 1525-1541. DOI:10.6038/pg20160416. (In Chinese)

Zhang, W., Guan, P., & Jian, X. (2014). Influence of the Permian volcanic-magmatic activity in the Tarim Basin on the generation and storage conditions of the Paleozoic. Acta Sedimentologica Sinica, 32(1), 148-158. DOI:10.14027/j.cnki.cjxb.2014.01.017. (In Chinese).

Zhu, D., Jin, Z., Hu, W., Song, Y., & Gao, X. (2007). Effect of igneous activity on hydrocarbon source rocks in Jiyang sub-basin, Eastern China. Journal of Petroleum Science & Engineering, 59(3-4), 309-320. DOI: 10.1016/j.petrol.2007.05.002.

How to Cite

APA

Sun, K., Tang, S., Zhang, S., Xi, Z. and Li, J. (2019). The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin. Earth Sciences Research Journal, 23(1), 27–34. https://doi.org/10.15446/esrj.v23n1.78805

ACM

[1]
Sun, K., Tang, S., Zhang, S., Xi, Z. and Li, J. 2019. The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin. Earth Sciences Research Journal. 23, 1 (Jan. 2019), 27–34. DOI:https://doi.org/10.15446/esrj.v23n1.78805.

ACS

(1)
Sun, K.; Tang, S.; Zhang, S.; Xi, Z.; Li, J. The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin. Earth sci. res. j. 2019, 23, 27-34.

ABNT

SUN, K.; TANG, S.; ZHANG, S.; XI, Z.; LI, J. The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin. Earth Sciences Research Journal, [S. l.], v. 23, n. 1, p. 27–34, 2019. DOI: 10.15446/esrj.v23n1.78805. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/78805. Acesso em: 20 oct. 2024.

Chicago

Sun, Ke, Shuheng Tang, Songhang Zhang, Zhaodong Xi, and Jun Li. 2019. “The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin”. Earth Sciences Research Journal 23 (1):27-34. https://doi.org/10.15446/esrj.v23n1.78805.

Harvard

Sun, K., Tang, S., Zhang, S., Xi, Z. and Li, J. (2019) “The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin”, Earth Sciences Research Journal, 23(1), pp. 27–34. doi: 10.15446/esrj.v23n1.78805.

IEEE

[1]
K. Sun, S. Tang, S. Zhang, Z. Xi, and J. Li, “The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin”, Earth sci. res. j., vol. 23, no. 1, pp. 27–34, Jan. 2019.

MLA

Sun, K., S. Tang, S. Zhang, Z. Xi, and J. Li. “The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin”. Earth Sciences Research Journal, vol. 23, no. 1, Jan. 2019, pp. 27-34, doi:10.15446/esrj.v23n1.78805.

Turabian

Sun, Ke, Shuheng Tang, Songhang Zhang, Zhaodong Xi, and Jun Li. “The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin”. Earth Sciences Research Journal 23, no. 1 (January 1, 2019): 27–34. Accessed October 20, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/78805.

Vancouver

1.
Sun K, Tang S, Zhang S, Xi Z, Li J. The magma thermal field and the shallow-level gas accumulation of tight gas reservoirs in the middle-eastern parts of the Qinshui Basin. Earth sci. res. j. [Internet]. 2019 Jan. 1 [cited 2024 Oct. 20];23(1):27-34. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/78805

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Song Wei, Feng Geng. (2021). Deepwater gas concentration feature extraction based on fluid mechanics. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06868-z.

2. Dameng Liu, Qifeng Jia, Yidong Cai, Changjin Gao, Feng Qiu, Zheng Zhao, Siyu Chen. (2022). A new insight into coalbed methane occurrence and accumulation in the Qinshui Basin, China. Gondwana Research, 111, p.280. https://doi.org/10.1016/j.gr.2022.08.011.

3. Shunxi Liu, Hongjiao Xue, Mengyu Zhao. (2023). Pore Structure and Fractal Characteristics of Coal Measure Shale in the Wuxiang Block in the Qinshui Basin. Processes, 11(12), p.3362. https://doi.org/10.3390/pr11123362.

Dimensions

PlumX

Article abstract page views

420

Downloads

Download data is not yet available.