Published

2020-01-01

Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement

Estimación de los observables de señal GPS L2 utilizando redes neuronales artificiales de perceptrón multicapa para mejorar la precisión posicional

DOI:

https://doi.org/10.15446/esrj.v24n1.78880

Keywords:

GPS, GNSS, Point positioning, ANN, Estimation of the L2 carrier observables (en)
GPS, GNSS, Posicionamiento, Red Artificial Neuronal, Estimación de los observables L2, (es)

Downloads

Authors

In recent decades, due to the increasing mobility of people and goods, the rapid growth of users of mobile devices with location-based services has increased the need for geospatial information. In this context, positioning using data collected by the Global Navigation Satellite Systems (multi-GNSS) has gained more importance in the field of geomatics. The quality of the solutions is related, among other factors, to the receiver’s type used in the work. To improve the positioning with low-cost devices and to avoid additional user expenses, this work aims to propose the implementation of an Artificial Neural Network (ANN) to estimate the GPS L2 carrier observables. For this, a network model was selected through the cross-validation (CV) technique, the observations were estimated, and the accuracy of the solutions was analyzed. The CV technique demonstrated that a Multilayer Perceptron with four intermediate layers and one with one intermediate layer are the most appropriate configurations for this problem. The dual-frequency RINEX processing (with artificial data) revealed significant improvements. For some tests, it was possible to comply with the rural property georeferencing regulations of the Brazilian National Institute of Colonization and Agrarian Reform (INCRA). The results indicate, therefore, that the methodological proposal of the present investigation is very promising for approximating the quality of positioning reachable using a dual-frequency receiver.
En las últimas décadas, debido a la creciente movilidad de personas y bienes, el rápido crecimiento de los usuarios de dispositivos móviles con servicios basados en la ubicación ha aumentado la necesidad de información geoespacial. En este contexto, el posicionamiento utilizando los datos recopilados por los Sistemas Globales de Satélite de Navegación (multi-GNSS) ha ganado más importancia en el campo de la geomática. La calidad de las soluciones está relacionada, entre otros factores, con el tipo de receptor utilizado en el trabajo. Para mejorar el posicionamiento con dispositivos de bajo costo y evitar gastos adicionales del usuario, este trabajo tiene como objetivo proponer la implementación de una Red Neural Artificial (ANN) para estimar los observables del operador GPS L2. Para esto, se seleccionó un modelo de red a través de la técnica de validación cruzada (CV), se estimaron las observaciones y se analizó la precisión de las soluciones. La técnica CV demostró que un Perceptrón multicapa con cuatro capas intermedias y uno con una capa intermedia son las configuraciones más apropiadas para este problema. El procesamiento RINEX de doble frecuencia (con datos artificiales) reveló mejoras significativas. Para algunas pruebas, fue posible cumplir con las regulaciones de georreferenciación de propiedad rural del Instituto Nacional de Colonización y Reforma Agraria (INCRA). Los resultados indican, por lo tanto, que la propuesta metodológica de la presente investigación es muy prometedora para aproximar la calidad de posicionamiento accesible utilizando un receptor de doble frecuencia.

References

Bengio, Y., & Lecun, Y. (2007). Scaling Learning Algorithms towards AI. Large Scale Kernel Machines, (1), 321–360.

Chen, X., Shen, C., Zhang, W. Bin, Tomizuka, M., Xu, Y., & Chiu, K. (2013). Novel hybrid of strong tracking Kalman filter and wavelet neural network for GPS/INS during GPS outages. Measurement, 46(10), 3847–3854. https://doi.org/10.1016/j.measurement.2013.07.016

Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow (1st ed.). Sebastopol: O’Reilly Media. https://doi.org/10.3389/fninf.2014.00014

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning (adaptive computation and machine learning series). Adaptive Computation and Machine Learning series. Cambridge: MIT Press.

Haykin, S. (2008). Neural Networks and Learning Machines (3rd ed.). Upper Saddle River: Pearson Prentice Hall.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer Feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8

IBGE. (2018). IBGE | Portal do IBGE. Retrieved May 16, 2018, from https://www.ibge.gov.br/index.php

Indriyatmoko, A., Kang, T., Lee, Y. J., Jee, G. I., Cho, Y. B., & Kim, J. (2008). Artificial neural networks for predicting DGPS carrier phase and pseudorange correction. GPS Solutions, 12(4), 237–247. https://doi.org/10.1007/s10291-008-0088-x

Jwo, D. J., & Chin, K. P. (2002). Applying Back-propagation neural networks to GDOP approximation. The Journal of Navigation, 55(1), 97–108. https://doi.org/10.1017/S0373463301001606

Jwo, D. J., & Lai, C. C. (2007). Neural network-based GPS GDOP approximation and classification. GPS Solutions, 11(1), 51–60. https://doi.org/10.1007/s10291-006-0030-z

Kingma, D. P., & Ba, J. L. (2014). Adam: a method for Stochastic optimization. International Conference on Learning Representations, 1–15.

Leandro, R. F., Silva, C. A. U., & Santos, M. C. (2007). Feeding neural network models with GPS observations: a challenging task. Dynamic Planet, 130, 186–193.

Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS Satellite Surveying (4th ed.). Hoboken: JohnWiley & Sons.

Mazzetto, J. V. B. (2017). Estimation of L2 observables of the GPS system through the use of Artificial Neural Networks. São Carlos School of Engineering - University of São Paulo (EESC-USP), São Carlos.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259

Mosavi, M. R. (2004). A Wavelet Based Neural Network for DGPS corrections prediction. WSEAS Transactions on Systems, 3(10), 3070–3075.

Mosavi, M. R. (2007). GPS receivers timing data processing using Neural Networks: optimal estimation and errors modeling. International Journal of Neural Systems, 17(5), 383–393. https://doi.org/10.1142/S0129065707001226

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by Back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0

Sang, J., Kubik, K., & Zhang, L. (1997). Prediction of DGPS Corrections with Neural Networks. In Knowledge-Based Intelligent Electronic Systems. IEEE. https://doi.org/10.1109/KES.1997.619409

Scikit-learn. (2018). Scikit-learn: Machine Learning in Python. Retrieved October 25, 2018, from http://scikit-learn.org/

Segantine, P. C. L. (2005). GPS: Global Positioning System (1st ed.). São Carlos: EESC/USP.

Semeniuk, L., & Noureldin, A. (2006). Bridging GPS outages using neural network estimates of INS position and velocity errors. Measurement Science and Technology, 17(10), 2783–2798. https://doi.org/10.1088/0957-0233/17/10/033

Silva, C. A. U. da. (2003). A method to estimate GPS data observables using artificial neural networks. São Carlos School of Engineering - University of São Paulo (EESC-USP), São Carlos.

Silva, I. N., Spatti, D. H., & Flauzino, R. A. (2010). Redes Neurais Artificiais para Engenharia e Ciências aplicadas (2nd ed.). São Paulo: Artliber.

TensorFlow. (2018). TensorFlow. Retrieved May 16, 2018, from https://www.tensorflow.org/

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. Neurocomputing: Foundations of Research, 123–134.

How to Cite

APA

Negri, C. V. C. and Segantine, P. C. L. (2020). Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement. Earth Sciences Research Journal, 24(1), 97–103. https://doi.org/10.15446/esrj.v24n1.78880

ACM

[1]
Negri, C.V.C. and Segantine, P.C.L. 2020. Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement. Earth Sciences Research Journal. 24, 1 (Jan. 2020), 97–103. DOI:https://doi.org/10.15446/esrj.v24n1.78880.

ACS

(1)
Negri, C. V. C.; Segantine, P. C. L. Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement. Earth sci. res. j. 2020, 24, 97-103.

ABNT

NEGRI, C. V. C.; SEGANTINE, P. C. L. Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement. Earth Sciences Research Journal, [S. l.], v. 24, n. 1, p. 97–103, 2020. DOI: 10.15446/esrj.v24n1.78880. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/78880. Acesso em: 28 mar. 2025.

Chicago

Negri, Cassio Vinícius Carletti, and Paulo Cesar Lima Segantine. 2020. “Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement”. Earth Sciences Research Journal 24 (1):97-103. https://doi.org/10.15446/esrj.v24n1.78880.

Harvard

Negri, C. V. C. and Segantine, P. C. L. (2020) “Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement”, Earth Sciences Research Journal, 24(1), pp. 97–103. doi: 10.15446/esrj.v24n1.78880.

IEEE

[1]
C. V. C. Negri and P. C. L. Segantine, “Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement”, Earth sci. res. j., vol. 24, no. 1, pp. 97–103, Jan. 2020.

MLA

Negri, C. V. C., and P. C. L. Segantine. “Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement”. Earth Sciences Research Journal, vol. 24, no. 1, Jan. 2020, pp. 97-103, doi:10.15446/esrj.v24n1.78880.

Turabian

Negri, Cassio Vinícius Carletti, and Paulo Cesar Lima Segantine. “Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement”. Earth Sciences Research Journal 24, no. 1 (January 1, 2020): 97–103. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/78880.

Vancouver

1.
Negri CVC, Segantine PCL. Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement. Earth sci. res. j. [Internet]. 2020 Jan. 1 [cited 2025 Mar. 28];24(1):97-103. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/78880

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Shuiying Chen, Qingxia Guo, Lina Li, Paul Awoyera. (2022). Sustainable Land Use Dynamic Planning Based on GIS and Symmetric Algorithm. Advances in Civil Engineering, 2022(1) https://doi.org/10.1155/2022/4087230.

2. Lin Yang, Shaocheng Ge, Zhihui Huang, Deji Jing, Xi Chen. (2021). The influence of surfactant on the wettability of coal dust and dust reduction efficiency. Arabian Journal of Geosciences, 14(14) https://doi.org/10.1007/s12517-021-07570-w.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 2
  • Scopus - Citation Indexes: 2
  • Usage
  • SciELO - Full Text Views: 201
  • SciELO - Abstract Views: 47
  • Captures
  • Mendeley - Readers: 9

Article abstract page views

611

Downloads