Published
Estimation of GPS L2 Signal Observables Using Multilayer Perceptron Artificial Neural Networks for Positional Accuracy Improvement
Estimación de los observables de señal GPS L2 utilizando redes neuronales artificiales de perceptrón multicapa para mejorar la precisión posicional
DOI:
https://doi.org/10.15446/esrj.v24n1.78880Keywords:
GPS, GNSS, Point positioning, ANN, Estimation of the L2 carrier observables (en)GPS, GNSS, Posicionamiento, Red Artificial Neuronal, Estimación de los observables L2, (es)
Downloads
References
Bengio, Y., & Lecun, Y. (2007). Scaling Learning Algorithms towards AI. Large Scale Kernel Machines, (1), 321–360.
Chen, X., Shen, C., Zhang, W. Bin, Tomizuka, M., Xu, Y., & Chiu, K. (2013). Novel hybrid of strong tracking Kalman filter and wavelet neural network for GPS/INS during GPS outages. Measurement, 46(10), 3847–3854. https://doi.org/10.1016/j.measurement.2013.07.016
Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow (1st ed.). Sebastopol: O’Reilly Media. https://doi.org/10.3389/fninf.2014.00014
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning (adaptive computation and machine learning series). Adaptive Computation and Machine Learning series. Cambridge: MIT Press.
Haykin, S. (2008). Neural Networks and Learning Machines (3rd ed.). Upper Saddle River: Pearson Prentice Hall.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer Feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8
IBGE. (2018). IBGE | Portal do IBGE. Retrieved May 16, 2018, from https://www.ibge.gov.br/index.php
Indriyatmoko, A., Kang, T., Lee, Y. J., Jee, G. I., Cho, Y. B., & Kim, J. (2008). Artificial neural networks for predicting DGPS carrier phase and pseudorange correction. GPS Solutions, 12(4), 237–247. https://doi.org/10.1007/s10291-008-0088-x
Jwo, D. J., & Chin, K. P. (2002). Applying Back-propagation neural networks to GDOP approximation. The Journal of Navigation, 55(1), 97–108. https://doi.org/10.1017/S0373463301001606
Jwo, D. J., & Lai, C. C. (2007). Neural network-based GPS GDOP approximation and classification. GPS Solutions, 11(1), 51–60. https://doi.org/10.1007/s10291-006-0030-z
Kingma, D. P., & Ba, J. L. (2014). Adam: a method for Stochastic optimization. International Conference on Learning Representations, 1–15.
Leandro, R. F., Silva, C. A. U., & Santos, M. C. (2007). Feeding neural network models with GPS observations: a challenging task. Dynamic Planet, 130, 186–193.
Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS Satellite Surveying (4th ed.). Hoboken: JohnWiley & Sons.
Mazzetto, J. V. B. (2017). Estimation of L2 observables of the GPS system through the use of Artificial Neural Networks. São Carlos School of Engineering - University of São Paulo (EESC-USP), São Carlos.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259
Mosavi, M. R. (2004). A Wavelet Based Neural Network for DGPS corrections prediction. WSEAS Transactions on Systems, 3(10), 3070–3075.
Mosavi, M. R. (2007). GPS receivers timing data processing using Neural Networks: optimal estimation and errors modeling. International Journal of Neural Systems, 17(5), 383–393. https://doi.org/10.1142/S0129065707001226
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by Back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0
Sang, J., Kubik, K., & Zhang, L. (1997). Prediction of DGPS Corrections with Neural Networks. In Knowledge-Based Intelligent Electronic Systems. IEEE. https://doi.org/10.1109/KES.1997.619409
Scikit-learn. (2018). Scikit-learn: Machine Learning in Python. Retrieved October 25, 2018, from http://scikit-learn.org/
Segantine, P. C. L. (2005). GPS: Global Positioning System (1st ed.). São Carlos: EESC/USP.
Semeniuk, L., & Noureldin, A. (2006). Bridging GPS outages using neural network estimates of INS position and velocity errors. Measurement Science and Technology, 17(10), 2783–2798. https://doi.org/10.1088/0957-0233/17/10/033
Silva, C. A. U. da. (2003). A method to estimate GPS data observables using artificial neural networks. São Carlos School of Engineering - University of São Paulo (EESC-USP), São Carlos.
Silva, I. N., Spatti, D. H., & Flauzino, R. A. (2010). Redes Neurais Artificiais para Engenharia e Ciências aplicadas (2nd ed.). São Paulo: Artliber.
TensorFlow. (2018). TensorFlow. Retrieved May 16, 2018, from https://www.tensorflow.org/
Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. Neurocomputing: Foundations of Research, 123–134.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Shuiying Chen, Qingxia Guo, Lina Li, Paul Awoyera. (2022). Sustainable Land Use Dynamic Planning Based on GIS and Symmetric Algorithm. Advances in Civil Engineering, 2022(1) https://doi.org/10.1155/2022/4087230.
2. Lin Yang, Shaocheng Ge, Zhihui Huang, Deji Jing, Xi Chen. (2021). The influence of surfactant on the wettability of coal dust and dust reduction efficiency. Arabian Journal of Geosciences, 14(14) https://doi.org/10.1007/s12517-021-07570-w.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.