Published

2021-10-27

Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera

Caracterización de suelos cercanos al Volcán Nevado del Ruíz, Cordillera Central de Colombia, con técnicas multiherramientas

DOI:

https://doi.org/10.15446/esrj.v25n3.79170

Keywords:

iron oxide, magnetic soil, Mossbauer spectroscopy, x-ray difraccion, Sentinel 2 (en)
óxidos de hierros, espectroscopía Mosssbauer, difracción de rayos X, Sentinel 2 (es)

Downloads

Authors

The presence of iron oxides may provide a sensitive indicator of the effects of cropping practices on coffee plantations. Authors characterized the mineral phases present in soil A horizons at three different farms located in the Department of Tolima within the regions of Líbano and Villahermosa. Our analysis includes X-ray diffraction, Mössbauer spectroscopy, and remote sensing to discriminate the distribution of the different magnetic mineral phases. X-ray diffraction was used to identify the mineralogical properties of iron oxide such as hematite, goethite, and ferrihydrite (Fh), as well as tectosilicate minerals such as albite and sanidine. Mössbauer spectroscopy results for samples taken at room temperature indicate the presence of Fe2+ and Fe3+ mineral phases, which possibly correspond to ilmenite or magnetite. Finally, Sentinel-2A multi-spectral imager (MSI) data was used to map the distribution of iron oxides and study the influence of their distribution throughout the study area. A high correlation between Mössbauer spectroscopy and Sentinel-2A MSI data exists throughout the study area. The results suggest that farms close to the main Nevado del Ruíz Volcano have a more significant mineralogical variability. In contrast, more distant farms are characterized by soils with more iron oxides, the product of weathering, erosion, and human activities.

La identificación de óxidos de hierro puede proporcionar un indicador sensible para determinar los efectos de diferentes prácticas de cultivos en plantaciones de café. Por tal razón, en la presente investigación se analiza el suelo de tres fincas ubicadas en el Departamento del Tolima. Se caracterizaron las fases minerales con hierro a lo largo de la capa productiva (horizonte A) de los suelos en las regiones de El Líbano y Villahermosa. Se utilizó difracción de rayos X, espectroscopia de Mössbauer y teledetección para discriminar la distribución de las diferentes fases minerales magnéticas. La difracción de rayos X se utilizó para identificar las propiedades mineralógicas del óxido de hierro como la hematita, la goethita y la ferrihidrita (Fh), además de los minerales tectosilicatos como la albita y la sanidina. Los resultados de la espectroscopia de Mössbauer para muestras tomadas a temperatura ambiente indicaron la presencia de fases minerales de Fe2+ y Fe3+, que posiblemente corresponden a ilmenita o magnetita. Finalmente, se utilizaron datos y anchos de banda de Sentinel-2A MSI para mapear los óxidos de hierro y estudiar la influencia de su distribución en toda el área de estudio. Los datos encontrados a través de las distintas técnicas, difracción de rayos X, espectroscopia de Mössbauer, y la comparación con datos Sentinel-2ª, son muy consistentes a lo largo del área de estudio. Nuestros resultados sugieren que las fincas cercanas al principal volcán Nevado del Ruíz tienen una mayor variabilidad mineralógica. En contraste, aquellas que se encuentran más distantes presentan una mayor cantidad de óxidos de hierro, producto de la erosión y las actividades humanas.

References

Bermúdez-Valderrama, L. P., & Gaitán-Díaz, N. A. (2016). Evaluación de nematodos de vida libre como indicadores de calidad y salud de suelos cafeteros. Trabajo de Grado en Administración Ambiental, Universidad de Ibagué, 110 p.

Bustos-Rodríguez, H., Oyola-Lozano, D., Rojas-Martínez, Y. A., Rivera-Pinilla. M., & Pérez-Alcázar, G. A. (2012). Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction. Hyperfine Interact, 208, 13–18, DOI 10.1007/s10751-012-0573-z.

Byrne, J., & Kappler, A. (2019). Mössbauer Spectroscopy. In: J. Kenney, H. Veeramani, & D. Alessi (Eds.) Analytical Geomicrobiology: A Handbook of Instrumental Techniques (pp. 314-338). Cambridge: Cambridge University Press. DOI:10.1017/9781107707399.013

Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S., & Righini, G. (2013). Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal of Geosciences, 6, 4529-4546, DOI:10.1007/s12517-012-0725-0.

Colombo, C., Palumbo, G., He, J. Z., Pinton, R., & Cesco, S. (2013). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 14, 538. https://doi.org/10.1007/s11368-013-0814-z

CCDIA-Corporación Colombiana De Investigación Agropecuaria. (2005). Guía para la toma de muestras de suelos ICA. Bogotá: Primera edición, p. 56–59.

Clark, M. S., Horwath, W. R., Shennan, C., & Scow, K. M. (1998). Changes in Soil Chemical Properties Resulting from Organic and Low-Input Farming Practices. Agronomy Journal, 90, 662–671. DOI:10.2134/agronj1998.00021962009000050016x

Clark, R. B., & Baligar, V. C. (2000). Acidic and alkaline soil constraints on plant mineral nutrition. In: R. E. Wilkinson (Ed.). Plant-environment interaction. New York: Marcel Dekker. pp. 133–177.

Cudahy, T., & Hewson, R. (2002). ASTER Geological Case Histories: Porphyry-Skarn-Epithermal, Iron Oxide Cu–Au and Broken Hill Pb–Zn–Ag. Communication in the Workshop Mapping the Earth with ASTER, London.

Downs, R. T., & Hall-Wallace, M. (2003). The American Mineralogist crystal structure database. American Mineralogist, 88(1), 247–250.

Eswaran, H., & Reich, P. (2005). Global Soil Regions. 1: 130,000,000. Global Soil Suborder Map 1, 5,000,000 http://soils.usda.gov/use/worldsoils/mapindex/order.html.

Fink, J. R., Vasconcellos Inda, A., Tales, T., & Vidal, B. (2016). Iron oxides and organic matter on soil phosphorus availability. Ciência e Agrotecnologia, 40(4), 369-379. https://doi.org/10.1590/1413-70542016404023016

Guarin, L. A. (2004). Variación pedogenética en los materiales de sedimentos de Lahar que sepultaron Armero, Tolima en 1985. Bogotá: Tesis de Postgrado, Universidad Nacional, 103 p.

Hernández, J., & Meurer, E. (1997). Óxidos de hierro en los suelos: sus propiedades y su caracterización con énfasis en los estudios de retención de fósforo. Agrociencia, 1(1), 1–14.

Igwe, C. A., Zarei, M., & Stahr, K. (2010). Fe and Al oxides distribution in some ultisols and inceptisols of southeastern Nigeria in relation to soil total phosphorus. Environmental Earth Sciences, 60(5), 1103-1111. https://doi.org/10.1007/s12665-009-0254-7

Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science, 19(12), 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001.

Larson, A. C., & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Los Alamos National Laboratory, Report LAUR 86–748.

Li, W., & Lan, P. (2017). The Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches. Frontiers in plant science, 8, 40. DOI:10.3389/fpls.2017.00040

Lindsay, W. (1991). Iron oxide solubilization by organic matter and its effect on iron availability. Plant and Soil, 130(1/2), 27-34. Retrieved from http://www.jstor.org/stable/42937282

Louis, J., Debaecker, V., Pflug, B., Main-Knorm, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., & Gascon, F. (2016). Sentinel-2 Sen2Cor: L2A Processor for Users, Proceedings Living Planet Symposium 2016. Spacebooks Online, pp. 1–8.

Mielke, C., Boesche, N. K., Rogass, C., Kaufmann, H., Gauert, C., & De Wit, M. (2014). Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sensing, 6(8), 6790-6816. DOI:10.3390/rs6086790

Nenova, V. (2006). Effect of iron supply on growth and photosystem II efficiency of pea plants. General and Applied Plant Physiology. (Special Issue) 32, 81-90.

Pierret, R. F. (1989). Semiconductor fundamentals volume I, modular series on solid state devices. Second edition, 10–13.

Reddy, B. V. S., Sanjana-Reddy, P., Bidinger, F., & Blümmel, M. (2003). Crop management factors influencing yield and quality of crop residues. Field Crops Research, 84(1–2), 57–77. https://doi.org/10.1016/S0378-4290(03)00141-2.

Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1–24. DOI:10.7831/ras.3.1

Ruan, H. (2014). Analysis of Major Factors Influencing Crop Yield of Shandong Province. In: Xu S. (Ed.) Proceedings of Selected Articles of 2013 World Agricultural Outlook Conference. Springer, Berlin, Heidelberg.

Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3-4), 157-183. https://doi.org/10.1016/S0169-1368(99)00007-4

Shenker, M., & Chen, Y. (2005). Increasing Iron Availability to Crops: Fertilizers, Organo-Fertilizers, and Biological Approaches. Soil Science & Plant Nutrition, 51, 1–17. DOI:10.1111/j.1747-0765.2005.tb00001.x

Sadeghian, S. (2008). Fertilidad del suelo y nutrición del café en Colombia. Boletín técnico N° 32 Cenicafé.

Souchez, R., Lemmens, M., Lorrain, R., Tisson, J.-L., & Sugden, D. (1990). Influence of hydroxyl-bearing minerals on the isotopic composition of ice from the basal zone of an ice sheet. Nature, 345(6272), 244-246. https://doi.org/10.1038/345244a0

Van der Meer, F. D., Van der Werff, H. M. A., & Van Ruitenbeek, F. J. A. (2014). Potential of ESA's Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124-133. https://doi.org/10.1016/j.rse.2014.03.022

Van der Werff, H., & Van der Meer, F. (2016). Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing. Remote Sensing 8, 883. DOI:10.3390/rs8110883.

Varret, F., & Teillet, J. (1976). Unpublished MOSFIT program.

Zhang X., Wang, L., Wang, L., Liu, B., Zheng, J., Zhao, J., Santana, G.P., Fabris, J. D., Goulart, A. T., & Santana, D. P. (2001). Magnetite and its transformation to hematite in a soil derived from steatite. Revista Brasileira de Ciencia do Solo, 25, 33–42.

How to Cite

APA

Hincapie Portela, B. A., Cortés-Soto, A., Bermudez, M. A., Yepez, S., Trujillo-Hernández, J. S., Salguero-Londoño, B. M. and Grande, S. (2021). Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera. Earth Sciences Research Journal, 25(3), 263–273. https://doi.org/10.15446/esrj.v25n3.79170

ACM

[1]
Hincapie Portela, B.A., Cortés-Soto, A., Bermudez, M.A., Yepez, S., Trujillo-Hernández, J.S., Salguero-Londoño, B.M. and Grande, S. 2021. Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera. Earth Sciences Research Journal. 25, 3 (Oct. 2021), 263–273. DOI:https://doi.org/10.15446/esrj.v25n3.79170.

ACS

(1)
Hincapie Portela, B. A.; Cortés-Soto, A.; Bermudez, M. A.; Yepez, S.; Trujillo-Hernández, J. S.; Salguero-Londoño, B. M.; Grande, S. Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera. Earth sci. res. j. 2021, 25, 263-273.

ABNT

HINCAPIE PORTELA, B. A.; CORTÉS-SOTO, A.; BERMUDEZ, M. A.; YEPEZ, S.; TRUJILLO-HERNÁNDEZ, J. S.; SALGUERO-LONDOÑO, B. M.; GRANDE, S. Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera. Earth Sciences Research Journal, [S. l.], v. 25, n. 3, p. 263–273, 2021. DOI: 10.15446/esrj.v25n3.79170. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/79170. Acesso em: 20 apr. 2024.

Chicago

Hincapie Portela, Brayam Arleth, Alexander Cortés-Soto, Mauricio A Bermudez, Santiago Yepez, Juan Sebastián Trujillo-Hernández, Blanca Myriam Salguero-Londoño, and Sebastián Grande. 2021. “Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera”. Earth Sciences Research Journal 25 (3):263-73. https://doi.org/10.15446/esrj.v25n3.79170.

Harvard

Hincapie Portela, B. A., Cortés-Soto, A., Bermudez, M. A., Yepez, S., Trujillo-Hernández, J. S., Salguero-Londoño, B. M. and Grande, S. (2021) “Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera”, Earth Sciences Research Journal, 25(3), pp. 263–273. doi: 10.15446/esrj.v25n3.79170.

IEEE

[1]
B. A. Hincapie Portela, “Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera”, Earth sci. res. j., vol. 25, no. 3, pp. 263–273, Oct. 2021.

MLA

Hincapie Portela, B. A., A. Cortés-Soto, M. A. Bermudez, S. Yepez, J. S. Trujillo-Hernández, B. M. Salguero-Londoño, and S. Grande. “Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera”. Earth Sciences Research Journal, vol. 25, no. 3, Oct. 2021, pp. 263-7, doi:10.15446/esrj.v25n3.79170.

Turabian

Hincapie Portela, Brayam Arleth, Alexander Cortés-Soto, Mauricio A Bermudez, Santiago Yepez, Juan Sebastián Trujillo-Hernández, Blanca Myriam Salguero-Londoño, and Sebastián Grande. “Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera”. Earth Sciences Research Journal 25, no. 3 (October 27, 2021): 263–273. Accessed April 20, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/79170.

Vancouver

1.
Hincapie Portela BA, Cortés-Soto A, Bermudez MA, Yepez S, Trujillo-Hernández JS, Salguero-Londoño BM, Grande S. Coffee plantation soil characterization using a multi-method approach near the Volcano Nevado del Ruiz, Colombian Central Cordillera. Earth sci. res. j. [Internet]. 2021 Oct. 27 [cited 2024 Apr. 20];25(3):263-7. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/79170

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Farid Rahal, Fatima-Zohra Baba-Hamed. (2022). Mapping of clay soils by remote sensing in the area of Mers El Kébir, Algeria. Revista Facultad de Ingeniería Universidad de Antioquia, https://doi.org/10.17533/udea.redin.20221099.

Dimensions

PlumX

Article abstract page views

384

Downloads

Download data is not yet available.