Published
Research on the establishment of a mining subsidence prediction model under thick loose layer and its parameter inversion method
Investigación sobre el establecimiento de un modelo de predicción de subsidencia minera bajo una capa gruesa inestable y su método de inversión de parámetros
DOI:
https://doi.org/10.15446/esrj.v25n2.79537Keywords:
underground mining;, mining predict, probability integral model, geometric model, parameter inversion (en)minería subterránea, predicción de minería, modelo de probabilidad integral, modelo geométrico, inversión de parámetros (es)
Downloads
Most of the coal mining in China is underground, which will inevitably cause surface deformation and trigger a series of geological disasters. Therefore, it is essential to find a suitable method to forecast the ground sinking caused by underground mining. The most commonly used prediction model in China is the probability integral model (PIM). But when this model is used in the geological condition of mining under thick loose layers, the predicted edge of the sinking basin will converge faster than the actual measured sinking situation. A geometric model (GM) with a similar model shape as the PIM but with a larger boundary value was established in this paper to solve this problem. Then an improved cuckoo search algorithm (ICSA) was proposed in this paper to calculate the GM parameters. The stability and reliability of the ICSA were verified through a simulated working face. At last, the ICSA, in combination with the GM and the PIM, was used to fit 6 working faces with the geological mining condition of thick loose layers in the Huainan mining area. The results prove that GM can solve the above-mentioned PIM problem when it is used in geological mining conditions of thick loose layers. And it was obtained through comparative analysis that the GM and the PIM parameters can take the same value except for the main influence radius.
La mayor parte de la minería del carbón en China es subterránea, lo que inevitablemente causa deformaciones en la superficie y desencadena desastres geológicos. Por lo tanto, es necesario encontrar un método adecuado para pronosticar el hundimiento del suelo causado por la minería subterránea. El modelo de predicción más utilizado en China es el modelo integral de probabilidad (PIM). Pero cuando este modelo se utiliza en la condición geológica de la minería bajo capas gruesas inetables, el borde previsto de la cuenca de hundimiento converge más rápido que la situación de hundimiento medida. Para resolver este problema, en este artículo se estableció un modelo geométrico (GM) que tiene una forma de modelo similar a la del PIM pero que tiene un valor límite mayor. En este trabajo se propuso un algoritmo de búsqueda de cuco mejorado (ICSA) para calcular los parámetros de GM, y se verificó la estabilidad y confiabilidad del ICSA a través de una frente de trabajo simulado. Por último, el ICSA en combinación con el GM y el PIM se utilizaron para ajustar 6 caras de trabajo con la condición de minería geológica de capas gruesas sueltas en el área minera de Huainan. Los resultados demuestran que el GM puede resolver el problema de PIM mencionado anteriormente cuando se utiliza en las condiciones de minería geológica de capas gruesas inestables. Y se obtuvo mediante análisis comparativo que los parámetros del GM y del PIM pueden tomar el mismo valor excepto por el radio de influencia principal.
References
Chang, Z., Wang, J., Chen, M., Ao, Z., & Yao, Q. (2015). A novel ground surface subsidence prediction model for sub-critical mining in the geological condition of a thick alluvium layer. Frontiers of Earth Science, 9(2), 330-341. https://doi.org/10.1007/s11707-014-0467-2
Dai, H. Y., Li, W. C., Liu, Y. X., & Jian, Y. D. (2011). Numerical simulation of surface movement laws under different unconsolidated layers thickness. Transactions of Nonferrous Metals Society of China, 21, s599-s603. https://doi.org/10.1016/S1003-6326(12)61647-1
Diao, X., Wu, K., Zhou, D., Li, L. (2016). Integrating the probability integral method for subsidence prediction and differential synthetic aperture radar interferometry for monitoring mining subsidence in Fengfeng, China. Journal of Applied Remote Sensing, 10(1). https://doi.org/10.1117/1.JRS.10.016028
Du, S., Zhang, J., Deng, Z., & Li, J. (2014). A New Approach of Geological Disasters Forecasting using Meteorological Factors based on Genetic Algorithm Optimized BP Neural Network. Elektronika Ir Elektrotechnika, 20(4). DOI: https://doi.org/10.5755/j01.eee.20.4.4238
Fan, H. D. Cheng, D., Deng, K. Z., Chen, B. Q., & Zhu, C. G. (2015). Subsidence monitoring using D-InSAR and probability integral prediction modelling in deep mining areas. Survey Review, 47(345). DOI:10.1179/1752270614Y.0000000153
Guo, G. L., & Wang, Y. J. (2000). Study of Robust Determining Parameters Model for Probability-integral Method and its Application. Acta Geodaetica et Cartographica Sinica.
Li, M., Zhang, J., Sun, K., Wu, Z., & Zhou, N. (2019). Reducing Surface Subsidence Risk Using Solid Waste Backfill Technique: A Case Study under Buildings. Polish Journal of Environmental Studies, 28(5), 3333-3341. DOI: https://doi.org/10.15244/pjoes/94814
Li, P., Peng, D., Tan, Z., & Deng, K. (2017). Study of probability integration method parameter inversion by the genetic algorithm. International Journal of Mining Science and Technology, 1073-1079. https://doi.org/10.1016/j.ijmst.2017.06.006
Liu, W., Pang, L., Xu, B., & Sun, X. (2020). Study on overburden failure characteristics in deep thick loose seam and thick coal seam mining. Geomatics, Natural Hazards and Risk, 11(1), 632-653. https://doi.org/10.1080/19475705.2020.1737584
Shen, Z., Xu, L. J., Liu, Z., & Qin, C. C. (2015). Calculating on the Prediction Parameters of Mining Subsidence with Probability Integral Method Based on Matlab. Metal Mine, 9, 10-174.
Ma, C., Li, H., & Zhang, P. (2017). Subsidence prediction method of solid backfilling mining with different filling ratios under thick unconsolidated layers. Arabian Journal of Geosciences, 10(23). DOI: 10.1007/s12517-017-3303-7
Wang, F., Jiang, B., Chen, S., & Ren, M. (2019). Surface collapse control under thick unconsolidated layers by backfilling strip mining in coal mines. International Journal of Rock Mechanics and Mining Sciences, 113, 268-277. https://doi.org/10.1016/j.ijrmms.2018.11.006
Wang, L., Deng, K., & Zheng, M. (2020). Research on ground deformation monitoring method in mining areas using the probability integral model fusion D-InSAR, sub-band InSAR and offset-tracking. International Journal of Applied Earth Observations and Geoinformation, 85. https://doi.org/10.1016/j.jag.2019.101981
Wang, L., Wei, T., Li, N., Chi, S. S., Jiang, C., Fang, S. Y. (2018). Research on probability integration parameter inversion of mining-induced surface subsidence based on quantum annealing. Environmental Geology, 77(21), 740.1-740.13. https://doi.org/10.1007/s12665-018-7927-z
Xing, X., Zhu, Y., Yuan, Z., Xiao, L., Liu, X., Chen, L., Xia, Q., & Liu, B. (2021). Predicting mining-induced dynamic deformations for drilling solution rock salt mine based on probability integral method and weibull temporal function. International Journal of Remote Sensing, 42(2), 639-671. https://doi.org/10.1080/01431161.2020.1813345
Xuan, D., & Xu, J. (2014). Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China. Natural Hazards, 73(2), 883-906. https://doi.org/10.1007/s11069-014-1113-8
Xu, H., Liu, B., & Fang, Z. (2014). New grey prediction model and its application in forecasting land subsidence in coal mine. Natural Hazards, 71(2), 1181-1194. https://doi.org/10.1007/s11069-013-0656-4
Xu, Y., Wu, K., Li, L., Zhou, D., & Hu, Z. (2019). Ground cracks development and characteristics of strata movement under fast excavation: a case study at Bulianta coal mine, China. Bulletin of engineering geology and the environment, 78(1), 325-340. https://doi.org/10.1007/s10064-017-1047-y
Xu, Z., Li, Q., Li, X., & Caggiano, A. (2020). Overburden Migration and Failure Characteristics in Mining Shallow Buried Coal Seam with Thick Loose Layer. Advances in Materials Science and Engineering. https://doi.org/10.1155/2020/9024751
Yang, W., & Xia, X. (2013). Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks. Computers and Geosciences, 52, 199-203. https://doi.org/10.1016/j.cageo.2012.10.017
Yu, Z., Zhu, S., Wu, Y., & Yu, H. (2020). Study on the structural characteristics of the overburden under thick loose layer and thin-bed rock for safety of mining coal seam. Environmental Earth Sciences, 79(1).
Zha, J. F., Feng, W. K., & Zhu, X. J. (2011). Research on Parameters Inversion in Probability Integral Method by Genetic Algorithm. Journal of Mining & Safety Engineering, 28(4), 655-659.
Zhao, K., Xu, N., Mei, G., & Tian, H. (2016). Predicting the distribution of ground fissures and water-conducted fissures induced by coal mining: a case study. Springerplus, 5(1), 977. DOI:10.1186/s40064‑016‑2609‑3
Zheng, M., Deng, K., Fan, H., & Huang, J. (2019). Monitoring and analysis of mining 3D deformation by multi-platform SAR images with the probability integral method. Frontiers of Earth Science, 13(1). https://doi.org/10.1007/s11707-018-0703-2
Zhou, D., Wu, K., Li, L., Diao, X., & Kong, X. (2016). A new methodology for studying the spreading process of mining subsidence in rock mass and alluvial soil: an example from the Huainan coal mine, China. Bulletin of Engineering Geology and the Environment, 75(3). DOI:10.1007/s10064-016-0877-3
Zhou, D. W., Wu, K., Cheng, G. L., & Li, L. (2015). Mechanism of mining subsidence in coal mining area with thick alluvium soil in China. Arabian Journal of Geosciences, 8(4). https://doi.org/10.1007/s12517-014-1382-2
Zhou, D. W., Wu, K., Miao, X. X., & Li, L. (2018). Combined prediction model for mining subsidence in coal mining areas covered with thick alluvial soil layer. Bulletin of Engineering Geology and the Environment, 77(1), 283-304. https://doi.org/10.1007/s10064-016-0961-8
Zhu, X., Zhang, W., Wang, Z., Wang, C., Li, W., & Wang, C., & Loupasakis, C. (2020). Simulation Analysis of Influencing Factors of Subsidence Based on Mining under Huge Loose Strata: A Case Study of Heze Mining Area, China. Geofluids. https://doi.org/10.1155/2020/6357683
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Zhiwei Wang, Yue Zhao, Peng Wang, Xiang Wang, Aihui Jiang, Guojian Zhang, Wanqiu Li, Jiantao Liu. (2024). Refined subsidence monitoring and dynamic prediction in narrow and long mining areas based on InSAR and probabilistic integral method. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-76037-1.
2. Jiachen Wang, Shanxi Wu, Zhaohui Wang, Shenyi Zhang, Boyuan Cheng, Huashun Xie. (2024). A Prediction Method for Surface Subsidence at Deep Mining Areas with Thin Bedrock and Thick Soil Layer Considering Consolidation Behavior. Natural Resources Research, 33(6), p.2661. https://doi.org/10.1007/s11053-024-10395-5.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.