Published
Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador
Niveles de Ra-226 en la Trucha Arcoíris, macroinvertebrados-sustratos y agua adyacente a la concesión minera Loma Larga, Azuay,-Ecuador.
DOI:
https://doi.org/10.15446/esrj.v24n1.79728Keywords:
226radium, rainbow trout, pylon AB6-A, LR-115, mining. (en)Radio 226, trucha arcoíris, pylon AB6-A, LR-115, minería. (es)
Downloads
El procesamiento de minerales se ha identificado entre los doce principales procesos industriales que deben estar bajo un control a la exposición de fuentes radiactivas naturales. La modificación y, por lo general, el aumento de la concentración de NORM en la corteza terrestre causa un desequilibrio en el ecosistema. Desequilibrio que afecta a la fauna, la cual es capaz de bioacumular estos radioisótopos e introducirlos en la cadena trófica. La finalidad principal de este trabajo fue establecer una línea base radio-ecológica; para ello se evaluaron los niveles de concentración de 226Ra en la trucha arcoíris, en matrices macroinvertebrados-sustratos y el agua de los ríos Irquis y Portete, ubicados en la provincia del Azuay, Ecuador. Se seleccionó una zona de estudio adyacente a la concesión minera Loma Larga. Las mediciones se realizaron haciendo uso de las celdas Lucas acopladas a un contador Pylon AB6-A y la “Can Technique”, utilizando detectores pasivos LR-115. Los resultados indicaron que la trucha arcoíris bioacumuló el 95.2 % del total del 226Ramdetectado, en los huesos y órganos, las matrices macroinvertebrados-sustrato presentaron una concentración que osciló entre 0.7 y 1.3 Bq/kg en el río Irquis, mientras que en el río Portete resultó entre 1.1 y 19.3 Bq/kg. Las muestras de agua en los puntos de muestreo del río Irquis, reflejaron una concentración variable entre 37.3 y 119.1 mBq/l y en el río Portete entre 43.5 a 146.4 mBq/l.
References
Clulow, F., Davé, N., Lim, T. & Avadhanula, R. (1998). Radium-226 in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution, 99(1), 13-28.
Cox, J. R. (1993). Naturally Occurring Radioactive Materials in the Oilfield: Changing the NORM. Tulane Law Review.
De Lama, G. & Osores, J. (2002). Determinación Radioquímica de radio-226, radio-228 y plomo-210 en aguas del río Rimac. http://dspace.ipen.gob.pe/bitstream/ipen/179/1/Pag.%2047-50-%20ICT%201998-2001.pdf (Last accessed January 2019)
De Oliveira, J., Mazzilli, B., De Oliveira-Sampa, M. H. & Silva, B. (1996). La Variación Sazonal de 226Ra y 222Rn en Fuentes de Agua Mineral en Aguas de Prata-Brasil. Proteccion Radiológica en América Latina y el Caribe, Proyecto ARCAL XVII/OIEA, 1, pp. 33-37.
Durand, J. (2012). El impacto de la extracción de oro en el Witwatersrand en los ríos y el sistema kárstico de Gauteng y la Provincia del Noroeste, Sudáfrica. Journal of African Earth Sciences, 68, 24-43.
Hameed, P. H., Shaheed, K., Somasundaram, S. S. N. & Riyengar, M. A. (1997). Radium-226 levels in the Cauvery river ecosystem, India. Journal of Biosciences, 22(2), 225-231.
Khan, A. J., Prasad, R. &Tyagi, R. K. (1992). Measurement of radon exhalation rate from some building materials. Nuclear Track Radiation Measurement, 20(4), 609-610. (https://doi.org/10.1016/1359-0189(92)90013-L)
Innocent, A. J., Onimisi, M. Y. & Jonah, S. A. (2013). Evaluation of Naturally Occurring Radionuclide Materials in Soil Samples Collected From Some Mining Sites in Zamfara State, Nigeria. British Journal of Applied Science and Technology, 3(4), 684-692.
International Atomic Energy Agency (IAEA). (1990). The Environmental Behavior of Radium. 1 (310), Vienna, Austria.
International Atomic Energy Agency (IAEA). (2014). The Environmental Behaviour of Radium: Revised Edition. (476), Vienna, Austria.
International Atomic Energy Agency (IAEA). (2006). Assessing the Need for Radiaton Protection Measures in Work Involving Minerals and Raw Materials. Viena, Austria.
INV Minerales Ecuador S.A. (2016). Auditoría Ambiental de Cumplimiento. Concesiones mineras: Cerro Casco y Río Falso (Proyecto Loma Larga) Periodo: oct. 2014- oct. 2016.
Jarrín-Jurado, J. R. & Morán-Reascos, D. V. (2017). Análisis de continuidad de extensión de la mineralización alrededor del sistema de alta sulfuración Loma Larga. Tesis de Grado, Universidad Central del Ecuador, Quito, Ecuador. (http://www.dspace.uce.edu.ec/handle/25000/10566) (Last accessed December 2018)
Mohamed Abd-Elzaher. (2012). An Overview on Studying 222Rn Exhalation Rates using Passive Technique Solid-State Nuclear Track Detectors. American Journal of Applied Sciences, 9(10), 1653-1659.
Organización Mundial de la Salud (OMS) (World Health Organization, WHO) (2006). Guías para la calidad del agua potable. Primer Apéndice a la tercera edición.
Pylon Electronics Inc. (2015). http://radoncorp.com/testing/pylon-monitors.php (Last accessed December 2018)
Porcelli, D., Andersson, P. S., Wasserburg, G. J. & Baskaran, M. (2001). Transport of U- and Th-series nuclides in a Baltic Shield watershed and the Baltic Sea. Geochimica et Cosmochimica Acta, 65(15), 2439-2459.
Rea-Toapanta, A. R. (2017). Mining policy and environmental sustainability in Ecuador. Revista Digital FIGEMPA: Investigación y Desarrollo, 1(2), 41-52.
Rowan, D., Silke, R., & Carr, J. (2013). Biota-sediment accumulation factors (BSAF) for radionuclides and sediment associated biota of the Ottawa River. International Atomic Energy Agency (IAEA). (https://pubs.cnl.ca/doi/abs/10.12943/ANR.2013.00013) (Last accessed December 2018)
Salman, D. J. & Al-Khalifa, I. J. (2013). The Determination of Radon Activity Concentration in local and imported fish of Basra Governorate/ (Iraq) by Using SSNTDs Technique. Journal of Basrah Researches (Sciences), 39(1), 135-142.
Sethy, N. K., Jha, V., Shukla, A., Sahoo, S., Tripathi, R. & Puranik, V. (2011). Natural Radionuclide (U and 226-Ra) in Water, Sediment, Fish and Plant Species in the Aquatic Environment around Uranium Mining and Ore processing Site at Jaduguda, India. Journal of Ecosystem & Ecography, 1, 103.
Siddeeg, S. M. (2013). Geochemistry of natural radionuclides in uranium-enriched river catchments. Ph.D. Thesis, School of Chemistry, Faculty of Engineering and Physical Science, University of Manchester, England.
Siddeeg, S. M., Bryan, N. D. & Livens, R. F. (2014). Dispersion of U-series radionuclides in stream sediments from Edala Valley, UK. Journal of Environmental Science: Processes & Impacts, (5), 991-1000. DOI: 10.1039/c3em00609c.
Skipperud, L., Stromman, G., Yunusov, M., Stegnar, P., Uralbekov, B., Tillovoev, H., Zjazjev, G., Heier, L. S., Rosseland, B. O. & Salbu, B. (2013). Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. Journal of Environmental Radioactivity, 123, 50-62. DOI: https://doi.org/10.1016/j.jenvrad.2012.05.007
Somogyi, G. (1990). Methods for measuring radium isotopes: Track Detection. In IAEA. The Environmental Behavior of Radium, 1, 229-256.
Sonkawade, R. G., Kant, K., Muralithar, S., Kumar, R. & Ramola, R. C. (2008). Natural radioactivity in common building construction and radiation shielding materials. Atmospheric Environment, 42, 2254-2259.
Stewart, G., Fowler, S. & Fisher, N. (2008). The Bioaccumulation of U- and Th-Series Radionuclides in Marine Organisms. Radiactivity in the Enviroment, 13, 269-305.
Swanson, S. (1983). Level of Ra-226, Pb-210 and U-total in fish near a Saskatchewan Uranium Mine and Mill. Health Physics, 45(1), 67-80.
Szabo, Z., Kraemer, T., De Paul, V. & Jacobsen, E. (2012). Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Applied Geochemistry, 27(3), 729-752. DOI: https://doi.org/10.1016/j.apgeochem.2011.11.002
United Nations Scientific Committee on the Effects (UNSCEAR) (2008). Sources and effects of ionizing radiation. Volume II. https://www.unscear.org/unscear/en/publications.html) (Last accessed December 2018)
Zubair, M., Shakir Khan, M. & Verma, D. (2012). Measurement of radium concentration and radon exhalation rates of soil samples collected from some areas of Bulandshahr district, Uttar Pradesh, India using plastic track detectors. Iranian Journal of Radiation Research, 10(2), 83-87.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Aїda M. Farag, David D. Harper, Isabelle M. Cozzarelli, Douglas B. Kent, Adam C. Mumford, Denise M. Akob, Travis Schaeffer, Luke R. Iwanowicz. (2022). Using Biological Responses to Monitor Freshwater Post-Spill Conditions over 3 years in Blacktail Creek, North Dakota, USA. Archives of Environmental Contamination and Toxicology, 83(3), p.253. https://doi.org/10.1007/s00244-022-00943-6.
2. Mohamed Hegazy Mohamed Salama, Mohamed Safwat Mohamed Tawfik. (2023). Bioaccumulation of natural radio-nuclides in aquatic, riparian and terrestrial animals along Suez-Azzafrana coastline, Egypt: insights from RESRAD-BIOTA. International Journal of Radiation Biology, 99(8), p.1239. https://doi.org/10.1080/09553002.2023.2158245.
3. Wenbing Jiang, Yihuo Jiang. (2021). Water pollution monitoring method after flood disaster based on big data technology. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06895-w.
4. Jiangbo Yu. (2021). Coordinated development of urban economy and total amount control of water environmental pollutants in the Yellow River basin. Arabian Journal of Geosciences, 14(8) https://doi.org/10.1007/s12517-021-06999-3.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.