Published

2020-01-01

Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador

Niveles de Ra-226 en la Trucha Arcoíris, macroinvertebrados-sustratos y agua adyacente a la concesión minera Loma Larga, Azuay,-Ecuador.

DOI:

https://doi.org/10.15446/esrj.v24n1.79728

Keywords:

226radium, rainbow trout, pylon AB6-A, LR-115, mining. (en)
Radio 226, trucha arcoíris, pylon AB6-A, LR-115, minería. (es)

Downloads

Authors

  • Tony Jesús Viloria Ávila Universidad Politécnica Salesiana, Sede Cuenca
  • Adriana Pesantez Universidad Politécnica Salesiana, Sede Cuenca
  • Efrén Vázquez Silva Universidad Politécnica Salesiana, Sede Cuenca https://orcid.org/0000-0002-4905-0215
  • Ernesto Manuel Delgado Universidad Politécnica Salesiana, Sede Cuenca
  • Paola Duque Universidad Politécnica Salesiana, Sede Cuenca
  • Laszlo Sajo-Bohus Universidad Simón Bolívar, Caracas.
Mineral processing has been identified among the twelve main industrial processes that must be under control due to the expose to natural radioactive sources. The modification and, generally, the increase in the concentration of Naturally Occurring Radioactive Materials (NORM) in the earth's crust cause an imbalance in the ecosystem. Imbalance that affects the fauna, which are able to bio accumulate these radioisotopes and introduce them into the trophic chain. The main purpose of this work was to establish a radio-ecological baseline. For this purpose, the concentration levels of 226Ra in rainbow trout, in macro invertebrate matrices-substrates and water from the Irquis and Portete rivers were evaluated. A study area adjacent to the Loma Larga mining concession was selected. The measurements were made using the Lucas cells coupled to a Pylon AB6A counter and the "Can Technique", using LR-115 passive detectors. The results indicated that rainbow trout bio accumulated in bones and organsa mean of 94.7% of the total 226Ra detected, which values varied from 4.69 to 2.46 Bq/kg, while macro invertebrate-substrate matrices showed a concentration that ranged between 0.7 and 1.3 Bq/kg in the Irquis River, while in the Portete River was between 1.1 and 19.3 Bq/kg. The water samples, in the sampling points of the Irquis River, showed concentrations that ranged between 37.3 and 119.1 mBq/l and in the Portete River between 43.5 to 146.4 mBq/l.

El procesamiento de minerales se ha identificado entre los doce principales procesos industriales que deben estar bajo un control a la exposición de fuentes radiactivas naturales. La modificación y, por lo general, el aumento de la concentración de NORM en la corteza terrestre causa un desequilibrio en el ecosistema. Desequilibrio que afecta a la fauna, la cual es capaz de bioacumular estos radioisótopos e introducirlos en la cadena trófica. La finalidad principal de este trabajo fue establecer una línea base radio-ecológica; para ello se evaluaron los niveles de concentración de 226Ra en la trucha arcoíris, en matrices macroinvertebrados-sustratos y el agua de los ríos Irquis y Portete, ubicados en la provincia del Azuay, Ecuador. Se seleccionó una zona de estudio adyacente a la concesión minera Loma Larga. Las mediciones se realizaron haciendo uso de las celdas Lucas acopladas a un contador Pylon AB6-A y la “Can Technique”, utilizando detectores pasivos LR-115. Los resultados indicaron que la trucha arcoíris bioacumuló el 95.2 % del total del 226Ramdetectado, en los huesos y órganos, las matrices macroinvertebrados-sustrato presentaron una concentración que osciló entre 0.7 y 1.3 Bq/kg en el río Irquis, mientras que en el río Portete resultó entre 1.1 y 19.3 Bq/kg. Las muestras de agua en los puntos de muestreo del río Irquis, reflejaron una concentración variable entre 37.3 y 119.1 mBq/l y en el río Portete entre 43.5 a 146.4 mBq/l.

References

Clulow, F., Davé, N., Lim, T. & Avadhanula, R. (1998). Radium-226 in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada. Environmental Pollution, 99(1), 13-28.

Cox, J. R. (1993). Naturally Occurring Radioactive Materials in the Oilfield: Changing the NORM. Tulane Law Review.

De Lama, G. & Osores, J. (2002). Determinación Radioquímica de radio-226, radio-228 y plomo-210 en aguas del río Rimac. http://dspace.ipen.gob.pe/bitstream/ipen/179/1/Pag.%2047-50-%20ICT%201998-2001.pdf (Last accessed January 2019)

De Oliveira, J., Mazzilli, B., De Oliveira-Sampa, M. H. & Silva, B. (1996). La Variación Sazonal de 226Ra y 222Rn en Fuentes de Agua Mineral en Aguas de Prata-Brasil. Proteccion Radiológica en América Latina y el Caribe, Proyecto ARCAL XVII/OIEA, 1, pp. 33-37.

Durand, J. (2012). El impacto de la extracción de oro en el Witwatersrand en los ríos y el sistema kárstico de Gauteng y la Provincia del Noroeste, Sudáfrica. Journal of African Earth Sciences, 68, 24-43.

Hameed, P. H., Shaheed, K., Somasundaram, S. S. N. & Riyengar, M. A. (1997). Radium-226 levels in the Cauvery river ecosystem, India. Journal of Biosciences, 22(2), 225-231.

Khan, A. J., Prasad, R. &Tyagi, R. K. (1992). Measurement of radon exhalation rate from some building materials. Nuclear Track Radiation Measurement, 20(4), 609-610. (https://doi.org/10.1016/1359-0189(92)90013-L)

Innocent, A. J., Onimisi, M. Y. & Jonah, S. A. (2013). Evaluation of Naturally Occurring Radionuclide Materials in Soil Samples Collected From Some Mining Sites in Zamfara State, Nigeria. British Journal of Applied Science and Technology, 3(4), 684-692.

International Atomic Energy Agency (IAEA). (1990). The Environmental Behavior of Radium. 1 (310), Vienna, Austria.

International Atomic Energy Agency (IAEA). (2014). The Environmental Behaviour of Radium: Revised Edition. (476), Vienna, Austria.

International Atomic Energy Agency (IAEA). (2006). Assessing the Need for Radiaton Protection Measures in Work Involving Minerals and Raw Materials. Viena, Austria.

INV Minerales Ecuador S.A. (2016). Auditoría Ambiental de Cumplimiento. Concesiones mineras: Cerro Casco y Río Falso (Proyecto Loma Larga) Periodo: oct. 2014- oct. 2016.

Jarrín-Jurado, J. R. & Morán-Reascos, D. V. (2017). Análisis de continuidad de extensión de la mineralización alrededor del sistema de alta sulfuración Loma Larga. Tesis de Grado, Universidad Central del Ecuador, Quito, Ecuador. (http://www.dspace.uce.edu.ec/handle/25000/10566) (Last accessed December 2018)

Mohamed Abd-Elzaher. (2012). An Overview on Studying 222Rn Exhalation Rates using Passive Technique Solid-State Nuclear Track Detectors. American Journal of Applied Sciences, 9(10), 1653-1659.

Organización Mundial de la Salud (OMS) (World Health Organization, WHO) (2006). Guías para la calidad del agua potable. Primer Apéndice a la tercera edición.

Pylon Electronics Inc. (2015). http://radoncorp.com/testing/pylon-monitors.php (Last accessed December 2018)

Porcelli, D., Andersson, P. S., Wasserburg, G. J. & Baskaran, M. (2001). Transport of U- and Th-series nuclides in a Baltic Shield watershed and the Baltic Sea. Geochimica et Cosmochimica Acta, 65(15), 2439-2459.

Rea-Toapanta, A. R. (2017). Mining policy and environmental sustainability in Ecuador. Revista Digital FIGEMPA: Investigación y Desarrollo, 1(2), 41-52.

Rowan, D., Silke, R., & Carr, J. (2013). Biota-sediment accumulation factors (BSAF) for radionuclides and sediment associated biota of the Ottawa River. International Atomic Energy Agency (IAEA). (https://pubs.cnl.ca/doi/abs/10.12943/ANR.2013.00013) (Last accessed December 2018)

Salman, D. J. & Al-Khalifa, I. J. (2013). The Determination of Radon Activity Concentration in local and imported fish of Basra Governorate/ (Iraq) by Using SSNTDs Technique. Journal of Basrah Researches (Sciences), 39(1), 135-142.

Sethy, N. K., Jha, V., Shukla, A., Sahoo, S., Tripathi, R. & Puranik, V. (2011). Natural Radionuclide (U and 226-Ra) in Water, Sediment, Fish and Plant Species in the Aquatic Environment around Uranium Mining and Ore processing Site at Jaduguda, India. Journal of Ecosystem & Ecography, 1, 103.

Siddeeg, S. M. (2013). Geochemistry of natural radionuclides in uranium-enriched river catchments. Ph.D. Thesis, School of Chemistry, Faculty of Engineering and Physical Science, University of Manchester, England.

Siddeeg, S. M., Bryan, N. D. & Livens, R. F. (2014). Dispersion of U-series radionuclides in stream sediments from Edala Valley, UK. Journal of Environmental Science: Processes & Impacts, (5), 991-1000. DOI: 10.1039/c3em00609c.

Skipperud, L., Stromman, G., Yunusov, M., Stegnar, P., Uralbekov, B., Tillovoev, H., Zjazjev, G., Heier, L. S., Rosseland, B. O. & Salbu, B. (2013). Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. Journal of Environmental Radioactivity, 123, 50-62. DOI: https://doi.org/10.1016/j.jenvrad.2012.05.007

Somogyi, G. (1990). Methods for measuring radium isotopes: Track Detection. In IAEA. The Environmental Behavior of Radium, 1, 229-256.

Sonkawade, R. G., Kant, K., Muralithar, S., Kumar, R. & Ramola, R. C. (2008). Natural radioactivity in common building construction and radiation shielding materials. Atmospheric Environment, 42, 2254-2259.

Stewart, G., Fowler, S. & Fisher, N. (2008). The Bioaccumulation of U- and Th-Series Radionuclides in Marine Organisms. Radiactivity in the Enviroment, 13, 269-305.

Swanson, S. (1983). Level of Ra-226, Pb-210 and U-total in fish near a Saskatchewan Uranium Mine and Mill. Health Physics, 45(1), 67-80.

Szabo, Z., Kraemer, T., De Paul, V. & Jacobsen, E. (2012). Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Applied Geochemistry, 27(3), 729-752. DOI: https://doi.org/10.1016/j.apgeochem.2011.11.002

United Nations Scientific Committee on the Effects (UNSCEAR) (2008). Sources and effects of ionizing radiation. Volume II. https://www.unscear.org/unscear/en/publications.html) (Last accessed December 2018)

Zubair, M., Shakir Khan, M. & Verma, D. (2012). Measurement of radium concentration and radon exhalation rates of soil samples collected from some areas of Bulandshahr district, Uttar Pradesh, India using plastic track detectors. Iranian Journal of Radiation Research, 10(2), 83-87.

How to Cite

APA

Viloria Ávila, T. J., Pesantez, A., Vázquez Silva, E., Delgado, E. M., Duque, P. and Sajo-Bohus, L. (2020). Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador. Earth Sciences Research Journal, 24(1), 29–34. https://doi.org/10.15446/esrj.v24n1.79728

ACM

[1]
Viloria Ávila, T.J., Pesantez, A., Vázquez Silva, E., Delgado, E.M., Duque, P. and Sajo-Bohus, L. 2020. Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador. Earth Sciences Research Journal. 24, 1 (Jan. 2020), 29–34. DOI:https://doi.org/10.15446/esrj.v24n1.79728.

ACS

(1)
Viloria Ávila, T. J.; Pesantez, A.; Vázquez Silva, E.; Delgado, E. M.; Duque, P.; Sajo-Bohus, L. Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador. Earth sci. res. j. 2020, 24, 29-34.

ABNT

VILORIA ÁVILA, T. J.; PESANTEZ, A.; VÁZQUEZ SILVA, E.; DELGADO, E. M.; DUQUE, P.; SAJO-BOHUS, L. Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador. Earth Sciences Research Journal, [S. l.], v. 24, n. 1, p. 29–34, 2020. DOI: 10.15446/esrj.v24n1.79728. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/79728. Acesso em: 28 sep. 2022.

Chicago

Viloria Ávila, Tony Jesús, Adriana Pesantez, Efrén Vázquez Silva, Ernesto Manuel Delgado, Paola Duque, and Laszlo Sajo-Bohus. 2020. “Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador”. Earth Sciences Research Journal 24 (1):29-34. https://doi.org/10.15446/esrj.v24n1.79728.

Harvard

Viloria Ávila, T. J., Pesantez, A., Vázquez Silva, E., Delgado, E. M., Duque, P. and Sajo-Bohus, L. (2020) “Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador”, Earth Sciences Research Journal, 24(1), pp. 29–34. doi: 10.15446/esrj.v24n1.79728.

IEEE

[1]
T. J. Viloria Ávila, A. Pesantez, E. Vázquez Silva, E. M. Delgado, P. Duque, and L. Sajo-Bohus, “Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador”, Earth sci. res. j., vol. 24, no. 1, pp. 29–34, Jan. 2020.

MLA

Viloria Ávila, T. J., A. Pesantez, E. Vázquez Silva, E. M. Delgado, P. Duque, and L. Sajo-Bohus. “Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador”. Earth Sciences Research Journal, vol. 24, no. 1, Jan. 2020, pp. 29-34, doi:10.15446/esrj.v24n1.79728.

Turabian

Viloria Ávila, Tony Jesús, Adriana Pesantez, Efrén Vázquez Silva, Ernesto Manuel Delgado, Paola Duque, and Laszlo Sajo-Bohus. “Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador”. Earth Sciences Research Journal 24, no. 1 (January 1, 2020): 29–34. Accessed September 28, 2022. https://revistas.unal.edu.co/index.php/esrj/article/view/79728.

Vancouver

1.
Viloria Ávila TJ, Pesantez A, Vázquez Silva E, Delgado EM, Duque P, Sajo-Bohus L. Levels of radium-226 in the rainbow trout, macroinvertebrates-substrates and water adjacent to the mining concession Loma Larga, Azuay-Ecuador. Earth sci. res. j. [Internet]. 2020Jan.1 [cited 2022Sep.28];24(1):29-34. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/79728

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Aїda M. Farag, David D. Harper, Isabelle M. Cozzarelli, Douglas B. Kent, Adam C. Mumford, Denise M. Akob, Travis Schaeffer, Luke R. Iwanowicz. (2022). Using Biological Responses to Monitor Freshwater Post-Spill Conditions over 3 years in Blacktail Creek, North Dakota, USA. Archives of Environmental Contamination and Toxicology, https://doi.org/10.1007/s00244-022-00943-6.

2. Wenbing Jiang, Yihuo Jiang. (2021). Water pollution monitoring method after flood disaster based on big data technology. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06895-w.

3. Jiangbo Yu. (2021). Coordinated development of urban economy and total amount control of water environmental pollutants in the Yellow River basin. Arabian Journal of Geosciences, 14(8) https://doi.org/10.1007/s12517-021-06999-3.


Dimensions

PlumX

Downloads

Download data is not yet available.

Article abstract page views

440