Published
Hydrogeological Modeling in Tropical Regions via FeFlow
Modelación hidrogeológica en regiones tropicales a través de Feflow
DOI:
https://doi.org/10.15446/esrj.v24n3.80116Keywords:
groundwater, sensitivity analysis, pilot-points technique, PEST, inverse parameterization (en)Agua subterránea, análisis de sensibilidad, técnica de puntos piloto, PEST, parametrización inversa (es)
Downloads
References
Alberti, L., Colombo, L., & Formentin, G. (2018). Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area. Science of The Total Environment, 621, 326–339. https://doi.org/10.1016/j.scitotenv.2017.11.253
Alcolea, A., Carrera, J., & Medina, A. (2006). Inversion of heterogeneous parabolic-type equations using the pilot points method. International Journal for Numerical Methods in Fluids, 51(9–10), 963–980. https://doi.org/10.1002/fld.1213
Alcolea, A., Carrera, J., & Medina, A. (2008). Regularized pilot points method for reproducing the effect of small scale variability: Application to simulations of contaminant transport. Journal of Hydrology, 355(1–4), 76–90. https://doi.org/10.1016/j.jhydrol.2008.03.004
Alcolea, Andrés, Carrera, J., & Medina, A. (2006). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11), 1678–1689. https://doi.org/10.1016/j.advwatres.2005.12.009
Amini, M., Johnson, A., Abbaspour, K. C., & Mueller, K. (2009). Modeling large scale geogenic contamination of groundwater, combination of geochemical expertise and statistical techniques. (R. S. Anderssen, R. D. Braddock, & L. T. H. Newham, Eds.), 18th World Imacs Congress and Modsim09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences. Univ Western Australia.
Arenas-Bautista, M. C., Arboleda Obando, P. F., Duque-Gardeazábal, N., Guadagnini, A., Riva, M., & Donado-Garzón, L. D. (2017). Hydrological Modelling the Middle Magdalena Valley (Colombia). In AGU. New Orleans.
Arismendy, R. D., Salazar, J. F., Vélez, M. V., & Caballero, H. (2004). Evaluación del potencial acuífero de los municipios de Puerto Berrío y Puerto Nare. Congreso Colombiano de Hidrogeología, 19. https://doi.org/bdigital.unal.edu.co/4441/
Asociacion Colombiana del Petroleo, & Asociacion Latinoamericana de la Industria Petrolera. (2008). Historia del Petróleo En Colombia, 4.
Betancur, T., Mejia, O., & Palacio, C. (2009). Conceptual hydrogeology model to Bajo Cauca antioqueño: a tropical aquifer system. Revista Facultad de Ingeniería, 48, 107–118. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0120-62302009000200011&script=sci_arttext
Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1), 206–222. https://doi.org/10.1007/s10040-004-0404-7
Carrera, J., Hidalgo, J. J., Slooten, L. J., & Vázquez-Suñé, E. (2010). Computational and conceptual issues in the calibration of seawater intrusion models | Problèmes conceptuels et de calibration des modèles d’intrusion marines. Hydrogeology Journal, 18(1), 131–145. https://doi.org/10.1007/s10040-009-0524-1
Carrera, J., Mousavi, S. F., Usunoff, E. J., Sánchez-Vila, X., & Galarza, G. (1993). A discussion on validation of hydrogeological models. Reliability Engineering and System Safety, 42(2–3), 201–216. https://doi.org/10.1016/0951-8320(93)90089-H
Chen, M., Izady, A., Abdalla, O. A., & Amerjeed, M. (2018). A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model. Journal of Hydrology, 557, 826–837. https://doi.org/10.1016/j.jhydrol.2017.12.071
Cherry, J. A., Parker, B. L., Bradbury, K. R., Eaton, T. T., Gotkowitz, M. G., Hart, D. J., & Borchardt, M. A. (2004). Role of Aquitards in the Protection of Aquifers from Contamination: A “State of the Science” Report. AWWA Research Foundation Report, 1–144. Retrieved from papers2://publication/uuid/77A8479D-E189-4E10-8F87-9228DE7BA417
Christensen, S., & Doherty, J. (2008). Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration. Advances in Water Resources, 31(4), 674–700. https://doi.org/10.1016/j.advwatres.2008.01.003
Comunian, A., & Renard, P. (2009). Introducing wwhypda: A world-wide collaborative hydrogeological parameters database. Hydrogeology Journal, 17(2), 481–489. https://doi.org/10.1007/s10040-008-0387-x
Custodio, E., Andreu-Rodes, J. M., Aragón, R., Estrela, T., Ferrer, J., García-Aróstegui, J. L., … Del Villar, A. (2016). Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. The Science of the Total Environment, 559, 302–316. https://doi.org/10.1016/j.scitotenv.2016.02.107
Dewandel, B., Maréchal, J. C., Bour, O., Ladouche, B., Ahmed, S., Chandra, S., & Pauwels, H. (2012). Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. Journal of Hydrology, 416–417, 83–97. https://doi.org/10.1016/j.jhydrol.2011.11.038
Dewandel, Benoît, Jeanpert, J., Ladouche, B., Join, J. L., & Maréchal, J. C. (2017). Inferring the heterogeneity, transmissivity and hydraulic conductivity of crystalline aquifers from a detailed water-table map. Journal of Hydrology, 550, 118–129. https://doi.org/10.1016/j.jhydrol.2017.03.075
ECOPETROL. (2016). Estudio De Impacto Ambiental Para La Solicitud De La Licencia Ambiental Del Área De Perforación Exploratoria Guane-A. Bogota.
Ehtiat, M., Mousavi, S. J., & Ghaheri, A. (2015). Ranking of conceptualized groundwater models based on model information criteria. Journal of Water Supply: Research and Technology - AQUA, 64(6), 670–687. https://doi.org/10.2166/aqua.2015.109
Finsterle, S., & Kowalsky, M. B. (2011). A truncated Levenberg-Marquardt algorithm for the calibration of highly parameterized nonlinear models. Computers and Geosciences, 37(6), 731–738. https://doi.org/10.1016/j.cageo.2010.11.005
Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.
Friedel, M. J., & Iwashita, F. (2013). Hybrid modeling of spatial continuity for application to numerical inverse problems. Environmental Modelling and Software, 43, 60–79. https://doi.org/10.1016/j.envsoft.2013.01.009
Gaganis, P., & Smith, L. (2006). Evaluation of the uncertainty of groundwater model predictions associated with conceptual errors: A per-datum approach to model calibration. Advances in Water Resources, 29(4), 503–514. https://doi.org/10.1016/j.advwatres.2005.06.006
Gallego, J., Jaramillo, H., & Patiño, A. (2015). Servicios intensivos en conocimiento en la industria del petróleo en Colombia.
Gan, Y., Liang, X.-Z., Duan, Q., Ye, A., Di, Z., Hong, Y., & Li, J. (2018). A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. Journal of Hydrology, 564, 697–711. https://doi.org/10.1016/j.jhydrol.2018.07.055
Gogu, R., Carabin, G., Hallet, V., Peters, V., & Dassargues, A. (2001). GIS-based hydrogeological databases and groundwater modelling. Hydrogeology Journal, 9(6), 555–569. https://doi.org/10.1007/s10040-001-0167-3
Golmohammadi, A., Khaninezhad, M.-R. M., & Jafarpour, B. (2015). Group-sparsity regularization for ill-posed subsurface flow inverse problems. Water Resources Research, 51(10), 8607–8626. https://doi.org/10.1002/2014WR016430
Gonzalez, M., Sladarriaga, G., & Jaramillo, O. (2010). Estimación de la demanda del agua: Conceptaulización y dimensionamiento de la demanda hídrica sectorial. Estudio Nacional Del Agua, 169–228.
Han, D., & Cao, G. (2018). Phase difference between groundwater storage changes and groundwater level fluctuations due to compaction of an aquifer-aquitard system. Journal of Hydrology, 566, 89–98. https://doi.org/10.1016/j.jhydrol.2018.09.010
Hassane Maina, F., Delay, F., & Ackerer, P. (2017). Estimating initial conditions for groundwater flow modeling using an adaptive inverse method. Journal of Hydrology, 552, 52–61. https://doi.org/10.1016/j.jhydrol.2017.06.041
Hernandez, A. F., Neuman, S. P., Guadagnini, A., & Carrera, J. (2003). Conditioning mean study state flow on hydraulic head and conductivity through geostatistical inversion. Stochastic Environmental Research and Risk Assessment, 17(5), 329–338. https://doi.org/10.1007/s00477-003-0154-4
Hu, L., & Jiao, J. J. (2015). Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China | Calage d’un modèle d’écoulement d’eau souterraine à grande échelle en utilisant les données GRACE: cas du Bassin de Qaidam, Chine | Calibração . Hydrogeology Journal, 23(7), 1305–1317. https://doi.org/10.1007/s10040-015-1278-6
Hughes, D. A. (2016). Hydrological modelling, process understanding and uncertainty in a southern African context: lessons from the northern hemisphere. Hydrological Processes, 30(14). https://doi.org/10.1002/hyp.10721
Ideam. (2014). Estudio Nacional del Agua 2014.
INGENIERIA GEOTEC, S. (2016). ESTUDIO DE IMPACTO AMBIENTAL PARA LAS ACTIVIDADES EXPLORATORIAS A DESARROLLARSE EN EL BLOQUE VMM-9. Bogota.
Ingeominas, I. C. D. G. Y. M. (2004). Programa de exploración de aguas subterráneas, 15. https://doi.org/Bajado el 3 de abril de 2011
Ingrain. (2012). CUENCA VALLE MEDIO DEL MAGDALENA -
Integración Geológica de la Digitalización y Análisis de Núcleos. ANH.
Irsa, J., & Zhang, Y. (2012). A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions. Water Resources Research, 48(9). https://doi.org/10.1029/2011WR011756
Islam, M. B., Firoz, A. B. M., Foglia, L., Marandi, A., Khan, A. R., Schüth, C., & Ribbe, L. (2017). A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh | Modèle régional d’écoulement des eaux souterraines pour une gestion durable des ressources en eaux souterraines dans la mé. Hydrogeology Journal, 25(3), 617–637. https://doi.org/10.1007/s10040-016-1526-4
Janetti, E. B., Riva, M., Straface, S., & Guadagnini, A. (2010). Stochastic characterization of the Montalto Uffugo research site (Italy) by geostatistical inversion of moment equations of groundwater flow. Journal of Hydrology, 381(1–2), 42–51. https://doi.org/10.1016/j.jhydrol.2009.11.023
Jardani, A., Dupont, J. P., Revil, A., Massei, N., Fournier, M., & Laignel, B. (2012). Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence. Journal of Hydrology, 472–473, 287–300. https://doi.org/10.1016/j.jhydrol.2012.09.031
Jiménez, S., Mariethoz, G., Brauchler, R., & Bayer, P. (2016). Smart pilot points using reversible-jump Markov-chain Monte Carlo. Water Resources Research, 52(5), 3966–3983. https://doi.org/10.1002/2015WR017922
Jung, Y., Ranjithan, R. S., & Mahinthakumar, G. (2011). Subsurface characterization using a D-optimality based pilot point method. Journal of Hydroinformatics, 13(4), 775–793. https://doi.org/10.2166/hydro.2010.111
Karay, G., & Hajnal, G. (2015). Modelling of Groundwater Flow in Fractured Rocks. Procedia Environmental Sciences, 25, 142–149. https://doi.org/https://doi.org/10.1016/j.proenv.2015.04.020
Kashyap, D., & Vakkalagadda, R. (2009). New model of variogram of groundwater hydraulic heads. Journal of Hydrologic Engineering, 14(8), 872–875. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000059
Klaas, D. K. S. Y., Imteaz, M. A., Sudiayem, I., Klaas, E. M. E., & Klaas, E. C. M. (2017). Novel approaches in sub-surface parameterisation to calibrate groundwater models. In IOP Conference Series: Earth and Environmental Science (Vol. 82). https://doi.org/10.1088/1755-1315/82/1/012014
Kpegli, K. A. R., Alassane, A., van der Zee, S. E. A. T. M., Boukari, M., & Mama, D. (2018). Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. Journal of Hydrology: Regional Studies, 18, 50–67. https://doi.org/10.1016/j.ejrh.2018.06.002
Le Ravalec-Dupin, M. (2010). Pilot block method methodology to calibrate stochastic permeability fields to dynamic data. Mathematical Geosciences, 42(2), 165–185. https://doi.org/10.1007/s11004-009-9249-x
Le Ravalec, M., & Mouche, E. (2012). Calibrating transmissivities from piezometric heads with the gradual deformation method: An application to the culebra dolomite unit at the waste isolation pilot plant (WIPP), New Mexico, USA. Journal of Hydrology, 472–473, 1–13. https://doi.org/10.1016/j.jhydrol.2012.08.053
Linde, N., Ginsbourger, D., Irving, J., Nobile, F., & Doucet, A. (2017). On uncertainty quantification in hydrogeology and hydrogeophysics. Advances in Water Resources, 110, 166–181. https://doi.org/10.1016/j.advwatres.2017.10.014
Linde, N., Renard, P., Mukerji, T., & Caers, J. (2015). Geological realism in hydrogeological and geophysical inverse modeling: A review. Advances in Water Resources, 86, 86–101. https://doi.org/10.1016/j.advwatres.2015.09.019
Llopis-Albert, C., Merigó, J. M., & Palacios-Marqués, D. (2015). Structure Adaptation in Stochastic Inverse Methods for Integrating Information. Water Resources Management, 29(1), 95–107. https://doi.org/10.1007/s11269-014-0829-2
Ma, W., & Jafarpour, B. (2017). Conditioning multiple-point geostatistical facies simulation on nonlinear flow data using pilot points method. In SPE Western Regional Meeting Proceedings (Vol. 2017-April, pp. 288–305).
Ma, W., & Jafarpour, B. (2018). An improved probability conditioning method for constraining multiple-point statistical facies simulation on nonlinear flow data. In SPE Western Regional Meeting Proceedings (Vol. 2018-April).
Maheswaran, R., Khosa, R., Gosain, A. K., Lahari, S., Sinha, S. K., Chahar, B. R., & Dhanya, C. T. (2016). Regional scale groundwater modelling study for Ganga River basin. Journal of Hydrology, 541, 727–741. https://doi.org/10.1016/j.jhydrol.2016.07.029
Marchant, B. P., & Bloomfield, J. P. (2018). Spatio-temporal modelling of the status of groundwater droughts. Journal of Hydrology, 564, 397–413. https://doi.org/10.1016/j.jhydrol.2018.07.009
Medina, A., Galarza, G., Carrera, J., Jódar, J., & Alcolea, A. (2001). The inverse problem in hydrogeology: Applications | El problema inverso en hidrología subterránea. Aplicaciones. Boletin Geologico y Minero, 112(SPECIAL ED), 93–106.
Meeks, J., Moeck, C., Brunner, P., & Hunkeler, D. (2017). Infiltration under snow cover: Modeling approaches and predictive uncertainty. Journal of Hydrology, 546, 16–27. https://doi.org/10.1016/j.jhydrol.2016.12.042
Merritt, W., Croke, B., & Jakeman, A. (2005). Sensitivity testing of a model for exploring water resources utilisation and management options. Environmental Modelling & Software, 20(8), 1013–1030. https://doi.org/10.1016/j.envsoft.2004.09.011
Mojica, J., & Franco, R. (1990). Estructura y Evolucion Tectonlca del Valle Medio y Superior del Magdalena, Colombia. Geología Colombiana, 17(17), 41–64.
Nash, J. E., & Barsi, B. I. (1983). A hybrid model for flow forecasting on large catchments. Journal of Hydrology, 65(1), 125–137. https://doi.org/10.1016/0022-1694(83)90213-5
Panzeri, M., Guadagnini, A., & Riva, M. (2012). Optimization of pilot points location for geostatistical inversion of groundwater flow. In IAHS-AISH Publication (Vol. 355, pp. 34–40).
Pescador-Arévalo, J. P., Arenas-Bautista, M. C., Donado, L. D., Guadagnini, A., & Riva, M. (2018). Three-dimensional geological model applied for groundwater flow simulations in the Middle Magdalena Valley, Colombia. In AGU Fall Meeting.
Pool, M., Carrera, J., Alcolea, A., & Bocanegra, E. M. (2015). A comparison of deterministic and stochastic approaches for regional scale inverse modeling on the Mar del Plata aquifer. Journal of Hydrology, 531, 214–229. https://doi.org/10.1016/j.jhydrol.2015.09.064
Riva, M., Guadagnini, A., Neuman, S. P., Janetti, E. B., & Malama, B. (2009). Inverse analysis of stochastic moment equations for transient flow in randomly heterogeneous media. Advances in Water Resources, 32(10), 1495–1507. https://doi.org/10.1016/j.advwatres.2009.07.003
Riva, M., Panzeri, M., Guadagnini, A., & Neuman, S. P. (2011). Role of model selection criteria in geostatistical inverse estimation of statistical data- and model-parameters. Water Resources Research, 47(7). https://doi.org/10.1029/2011WR010480
Sahoo, S., & Jha, M. K. (2017). Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India | Modélisation numérique des écoulements d’eau souterraine pour évaluer les . Hydrogeology Journal, 25(8), 2489–2511. https://doi.org/10.1007/s10040-017-1610-4
Sanchez-León, E., Leven, C., Haslauer, C. P., & Cirpka, O. A. (2016). Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization. Groundwater, 54(4), 498–507. https://doi.org/10.1111/gwat.12381
Şen, Z. (2015). Practical and Applied Hydrogeology. Practical and Applied Hydrogeology. Elsevier. https://doi.org/10.1016/B978-0-12-800075-5.00002-9
Sharma, A., Tiwari, K. N., & Bhadoria, P. B. S. (2011). Determining the optimum cell size of digital elevation model for hydrologic application. Journal of Earth System Science, 120(4).
Sheikholeslami, R., Yassin, F., Lindenschmidt, K.-E., & Razavi, S. (2017). Improved understanding of river ice processes using global sensitivity analysis approaches. Journal of Hydrologic Engineering, 22(11). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001574
Shewchuk, J. R. (1997). Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete and Computational Geometry, 18, 305–363.
Sieber, J., Yates, D., Huber-Lee, a., & Purkey, D. (2005). WEAP a demand, priority, and preference driven water planning model: Part 1, model characteristics. Water International, 30(4), 487–500. https://doi.org/10.1080/02508060508691893
Simmons, J. A., Harley, M. D., Marshall, L. A., Turner, I. L., Splinter, K. D., & Cox, R. J. (2017). Calibrating and assessing uncertainty in coastal numerical models. Coastal Engineering, 125. https://doi.org/10.1016/j.coastaleng.2017.04.005
Sun, D., Zhao, C., Wei, H., & Peng, D. (2011). Simulation of the relationship between land use and groundwater level in Tailan River basin, Xinjiang, China. Quaternary International, 244(2), 254–263. https://doi.org/10.1016/j.quaint.2010.08.017
Sun, N.-Z., & Sun, A. (2015). Model calibration and parameter estimation: For environmental and water resource systems. Model Calibration and Parameter Estimation: For Environmental and Water Resource Systems. https://doi.org/10.1007/978-1-4939-2323-6
Tiedeman, C. R., & Green, C. T. (2013). Effect of correlated observation error on parameters, predictions, and uncertainty. Water Resources Research, 49(10), 6339–6355. https://doi.org/10.1002/wrcr.20499
Tonkin, M., Doherty, J., & Moore, C. (2007). Efficient nonlinear predictive error variance for highly parameterized models. Water Resources Research, 43(7). https://doi.org/10.1029/2006WR005348
Tóth, Á., Havril, T., Simon, S., Galsa, A., Monteiro Santos, F. A., Müller, I., & Mádl-Szonyi, J. (2016). Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. Journal of Hydrology, 539, 330–344. https://doi.org/10.1016/j.jhydrol.2016.05.038
Trefry, M. G., & Muffels, C. (2007). FEFLOW: A Finite-Element Ground Water Flow and Transport Modeling Tool. Groundwater, 45(5), 525–528. https://doi.org/10.1111/j.1745-6584.2007.00358.x
Tsai, F. T.-C., & Yeh, W. W.-G. (2011). Model calibration and parameter structure identification in characterization of groundwater systems. Groundwater Quantity and Quality Management.
Usman, M., Reimann, T., Liedl, R., Abbas, A., Conrad, C., & Saleem, S. (2018). Inverse parametrization of a regional groundwater flow model with the aid of modelling and GIS: Test and application of different approaches. ISPRS International Journal of Geo-Information, 7(1). https://doi.org/10.3390/ijgi7010022
Usman, Muhammad, Liedl, R., & Kavousi, A. (2015). Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan. Environmental Earth Sciences, 74(2), 1463–1486. https://doi.org/10.1007/s12665-015-4139-7
Vargas Martínez, N. O., Campillo Pérez, A. K., García Herrán, M., & Jaramillo Rodríguez, O. (2013). Aguas Subterráneas en Colombia: una Visión General. Bogota: IDEAM.
Wang, T., Zhou, W., Chen, J., Xiao, X., Li, Y., & Zhao, X. (2014). Simulation of hydraulic fracturing using particle flow method and application in a coal mine. International Journal of Coal Geology, 121, 1–13.
Wang, X., Jardani, A., & Jourde, H. (2017). A hybrid inverse method for hydraulic tomography in fractured and karstic media. Journal of Hydrology, 551, 29–46. https://doi.org/10.1016/j.jhydrol.2017.05.051
White, J. T. (2018). A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environmental Modelling & Software, 109, 191–201. https://doi.org/10.1016/j.envsoft.2018.06.009
White, J. T., Fienen, M. N., & Doherty, J. E. (2016). A python framework for environmental model uncertainty analysis. Environmental Modelling & Software, 85, 217–228. https://doi.org/10.1016/j.envsoft.2016.08.017
Woodward, S. J. R., Wöhling, T., & Stenger, R. (2016). Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information. Journal of Hydrology, 534, 680–694. https://doi.org/10.1016/j.jhydrol.2016.01.045
Wu, Q., Liu, S., Cai, Y., Li, X., & Jiang, Y. (2017). Improvement of hydrological model calibration by selecting multiple parameter ranges. Hydrology and Earth System Sciences, 21(1). https://doi.org/10.5194/hess-21-393-2017
Xie, S., Hu, Y., Jiang, M., & Liu, Q. (2006). Study on the inverse method to permeability coefficient of groundwater system: A case study of uranium gangue site in Southern China. In 5th International Conference on Environmental Informatics, ISEIS 2006.
Yao, L., & Guo, Y. (2014). Hybrid algorithm for parameter estimation of the groundwater flow model with an improved genetic algorithm and gauss-newton method. Journal of Hydrologic Engineering, 19(3), 482–494. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000823
Yeh, T. C. J., Mao, D.-Q., Zha, Y.-Y., Wen, J.-C., Wan, L., Hsu, K.-C., & Lee, C.-H. (2015). Uniqueness, scale, and resolution issues in groundwater model parameter identification. Water Science and Engineering, 8(3), 175–194. https://doi.org/10.1016/j.wse.2015.08.002
Zhang, H., Li, Z., Saifullah, M., Li, Q., & Li, X. (2016). Impact of DEM Resolution and Spatial Scale: Analysis of Influence Factors and Parameters on Physically Based Distributed Model. Advances in Meteorology, 2016, 1–10. https://doi.org/10.1155/2016/8582041
Zhang, M., Burbey, T. J., Nunes, V. D. S., & Borggaard, J. (2014). A new zonation algorithm with parameter estimation using hydraulic head and subsidence observations. Groundwater, 52(4), 514–524. https://doi.org/10.1111/gwat.12102
Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014). Inverse methods in hydrogeology: Evolution and recent trends. Advances in Water Resources, 63, 22–37. https://doi.org/10.1016/j.advwatres.2013.10.014
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Ahmed Shalby, Bakenaz A. Zeidan, Katarzyna Pietrucha-Urbanik, Abdelazim M. Negm, Asaad M. Armanuos. (2024). Modelling Approach for Assessment of Groundwater Potential of the Moghra Aquifer, Egypt, for Extensive Rural Development. Water, 16(11), p.1562. https://doi.org/10.3390/w16111562.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











