Published

2020-10-12

Hydrogeological Modeling in Tropical Regions via FeFlow

Modelación hidrogeológica en regiones tropicales a través de Feflow

DOI:

https://doi.org/10.15446/esrj.v24n3.80116

Keywords:

groundwater, sensitivity analysis, pilot-points technique, PEST, inverse parameterization (en)
Agua subterránea, análisis de sensibilidad, técnica de puntos piloto, PEST, parametrización inversa (es)

Downloads

Authors

hydrological modeling is commonly crossed by the solution of inverse problems and the estimation for non-linear parameters techniques. Despite this common scenario, the use of these guidelines is limited to the proper sampling of in-field data. This sampling involves a variety of data that generally have little availability, especially in regions where geographical and climatic variability does not allow a constant measurement. In this article, we present the analysis of a regional underground flow model using two techniques: pilot points (PP) and constant zones (CZ). This methodologies allow identifying properly if there are any biased parameters and heterogeneity of hydraulic properties. For this purpose, we developed a numerical variable density model that is limited with reinterpreted data from real measurements. For the CZ technique, the initial parameters are assigned according to its layer, and every layer is considered constant for parameter values; in contrast for PP technique, the initial parameters are assigned according to interpolations using in-situ point measurements. The developed model was applied in an area under the influence of the ITCZ, located in the middle valley of Magdalena (MMV). This area is important on the development of the country due to its contribution to GDP and has been subject to significant changes in land use, as a result of intense economic activities, for example, agriculture, hydroelectric power, and production of oil and gas. The established model shows a scarce link with the observed state variable (hydraulic head -K), this proves the importance of spatial heterogeneity in K. The model is calibrated in order to establish K (as an anisotropic variable that varies spatially), the porosity (η) and the specific storage capacity (Ss) in the PP and CZ, reducing a “mean square” error of state variable dependable on the observation points. The results show that the PP system approach provides a better heterogeneity representation and shows that each parameter is sensitive, and does not depend on other parameters, giving to the parameter evaluation results factual independence and authenticity. This research compiles a methodology to assertively restrict a highly parameterized inverse model with field data to estimate aquifer parameters that vary spatially at a regional scale
La modelación hidrogeológica es comúnmente realizada por la solución de problemas inversos y la estimación de técnicas de parámetros no lineales. A pesar de este escenario común, el uso de estas directrices se limita al muestreo adecuado de los datos de campo. Este muestreo implica una variedad de datos que generalmente tienen poca disponibilidad, especialmente en regiones donde la variabilidad geográfica y climática no permite una medición constante. En este artículo, presentamos el análisis de un modelo de flujo subterráneo regional utilizando dos técnicas: puntos piloto (PP) y zonas constantes (CZ). Estas metodologías permiten identificar correctamente si hay parámetros sesgados y heterogeneidad de las propiedades hidráulicas. Para este propósito, desarrollamos un modelo numérico de densidad variable que está limitado con datos reinterpretados de mediciones reales. Para la técnica CZ, los parámetros iniciales se asignan de acuerdo con su capa, y cada capa se considera constante para los valores de los parámetros; en contraste con la técnica de PP, los parámetros iniciales se asignan de acuerdo con las interpolaciones utilizando mediciones de puntos in situ. El modelo desarrollado se aplicó en un área bajo la influencia de la ZCIT, ubicada en el valle medio de Magdalena (MMV). Esta área es importante para el desarrollo del país debido a su contribución al PIB y ha estado sujeta a cambios significativos en el uso de la tierra, como resultado de intensas actividades económicas, por ejemplo, la agricultura, la energía hidroeléctrica y la producción de petróleo y gas. El modelo establecido muestra un vínculo escaso con la variable de estado observada (cabeza hidráulica -K), esto demuestra la importancia de la heterogeneidad espacial en K. El modelo se calibra para establecer K (como una variable anisotrópica que varía espacialmente), la porosidad (η) y la capacidad de almacenamiento específica (Ss) en el PP y CZ, reduciendo un error de "cuadrado medio" de la variable de estado dependiente de los puntos de observación. Los resultados muestran que el enfoque del sistema PP proporciona una mejor representación de heterogeneidad y muestra que cada parámetro es sensible y no depende de otros parámetros, lo que da a los resultados de la evaluación de los parámetros independencia de los hechos y autenticidad. Esta investigación compila una metodología para restringir asertivamente un modelo inverso altamente parametrizado con datos de campo para estimar parámetros de acuíferos que varían espacialmente a escala regional.

References

Alberti, L., Colombo, L., & Formentin, G. (2018). Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area. Science of The Total Environment, 621, 326–339. https://doi.org/10.1016/j.scitotenv.2017.11.253

Alcolea, A., Carrera, J., & Medina, A. (2006). Inversion of heterogeneous parabolic-type equations using the pilot points method. International Journal for Numerical Methods in Fluids, 51(9–10), 963–980. https://doi.org/10.1002/fld.1213

Alcolea, A., Carrera, J., & Medina, A. (2008). Regularized pilot points method for reproducing the effect of small scale variability: Application to simulations of contaminant transport. Journal of Hydrology, 355(1–4), 76–90. https://doi.org/10.1016/j.jhydrol.2008.03.004

Alcolea, Andrés, Carrera, J., & Medina, A. (2006). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11), 1678–1689. https://doi.org/10.1016/j.advwatres.2005.12.009

Amini, M., Johnson, A., Abbaspour, K. C., & Mueller, K. (2009). Modeling large scale geogenic contamination of groundwater, combination of geochemical expertise and statistical techniques. (R. S. Anderssen, R. D. Braddock, & L. T. H. Newham, Eds.), 18th World Imacs Congress and Modsim09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences. Univ Western Australia.

Arenas-Bautista, M. C., Arboleda Obando, P. F., Duque-Gardeazábal, N., Guadagnini, A., Riva, M., & Donado-Garzón, L. D. (2017). Hydrological Modelling the Middle Magdalena Valley (Colombia). In AGU. New Orleans.

Arismendy, R. D., Salazar, J. F., Vélez, M. V., & Caballero, H. (2004). Evaluación del potencial acuífero de los municipios de Puerto Berrío y Puerto Nare. Congreso Colombiano de Hidrogeología, 19. https://doi.org/bdigital.unal.edu.co/4441/

Asociacion Colombiana del Petroleo, & Asociacion Latinoamericana de la Industria Petrolera. (2008). Historia del Petróleo En Colombia, 4.

Betancur, T., Mejia, O., & Palacio, C. (2009). Conceptual hydrogeology model to Bajo Cauca antioqueño: a tropical aquifer system. Revista Facultad de Ingeniería, 48, 107–118. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0120-62302009000200011&script=sci_arttext

Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1), 206–222. https://doi.org/10.1007/s10040-004-0404-7

Carrera, J., Hidalgo, J. J., Slooten, L. J., & Vázquez-Suñé, E. (2010). Computational and conceptual issues in the calibration of seawater intrusion models | Problèmes conceptuels et de calibration des modèles d’intrusion marines. Hydrogeology Journal, 18(1), 131–145. https://doi.org/10.1007/s10040-009-0524-1

Carrera, J., Mousavi, S. F., Usunoff, E. J., Sánchez-Vila, X., & Galarza, G. (1993). A discussion on validation of hydrogeological models. Reliability Engineering and System Safety, 42(2–3), 201–216. https://doi.org/10.1016/0951-8320(93)90089-H

Chen, M., Izady, A., Abdalla, O. A., & Amerjeed, M. (2018). A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model. Journal of Hydrology, 557, 826–837. https://doi.org/10.1016/j.jhydrol.2017.12.071

Cherry, J. A., Parker, B. L., Bradbury, K. R., Eaton, T. T., Gotkowitz, M. G., Hart, D. J., & Borchardt, M. A. (2004). Role of Aquitards in the Protection of Aquifers from Contamination: A “State of the Science” Report. AWWA Research Foundation Report, 1–144. Retrieved from papers2://publication/uuid/77A8479D-E189-4E10-8F87-9228DE7BA417

Christensen, S., & Doherty, J. (2008). Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration. Advances in Water Resources, 31(4), 674–700. https://doi.org/10.1016/j.advwatres.2008.01.003

Comunian, A., & Renard, P. (2009). Introducing wwhypda: A world-wide collaborative hydrogeological parameters database. Hydrogeology Journal, 17(2), 481–489. https://doi.org/10.1007/s10040-008-0387-x

Custodio, E., Andreu-Rodes, J. M., Aragón, R., Estrela, T., Ferrer, J., García-Aróstegui, J. L., … Del Villar, A. (2016). Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. The Science of the Total Environment, 559, 302–316. https://doi.org/10.1016/j.scitotenv.2016.02.107

Dewandel, B., Maréchal, J. C., Bour, O., Ladouche, B., Ahmed, S., Chandra, S., & Pauwels, H. (2012). Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. Journal of Hydrology, 416–417, 83–97. https://doi.org/10.1016/j.jhydrol.2011.11.038

Dewandel, Benoît, Jeanpert, J., Ladouche, B., Join, J. L., & Maréchal, J. C. (2017). Inferring the heterogeneity, transmissivity and hydraulic conductivity of crystalline aquifers from a detailed water-table map. Journal of Hydrology, 550, 118–129. https://doi.org/10.1016/j.jhydrol.2017.03.075

ECOPETROL. (2016). Estudio De Impacto Ambiental Para La Solicitud De La Licencia Ambiental Del Área De Perforación Exploratoria Guane-A. Bogota.

Ehtiat, M., Mousavi, S. J., & Ghaheri, A. (2015). Ranking of conceptualized groundwater models based on model information criteria. Journal of Water Supply: Research and Technology - AQUA, 64(6), 670–687. https://doi.org/10.2166/aqua.2015.109

Finsterle, S., & Kowalsky, M. B. (2011). A truncated Levenberg-Marquardt algorithm for the calibration of highly parameterized nonlinear models. Computers and Geosciences, 37(6), 731–738. https://doi.org/10.1016/j.cageo.2010.11.005

Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

Friedel, M. J., & Iwashita, F. (2013). Hybrid modeling of spatial continuity for application to numerical inverse problems. Environmental Modelling and Software, 43, 60–79. https://doi.org/10.1016/j.envsoft.2013.01.009

Gaganis, P., & Smith, L. (2006). Evaluation of the uncertainty of groundwater model predictions associated with conceptual errors: A per-datum approach to model calibration. Advances in Water Resources, 29(4), 503–514. https://doi.org/10.1016/j.advwatres.2005.06.006

Gallego, J., Jaramillo, H., & Patiño, A. (2015). Servicios intensivos en conocimiento en la industria del petróleo en Colombia.

Gan, Y., Liang, X.-Z., Duan, Q., Ye, A., Di, Z., Hong, Y., & Li, J. (2018). A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. Journal of Hydrology, 564, 697–711. https://doi.org/10.1016/j.jhydrol.2018.07.055

Gogu, R., Carabin, G., Hallet, V., Peters, V., & Dassargues, A. (2001). GIS-based hydrogeological databases and groundwater modelling. Hydrogeology Journal, 9(6), 555–569. https://doi.org/10.1007/s10040-001-0167-3

Golmohammadi, A., Khaninezhad, M.-R. M., & Jafarpour, B. (2015). Group-sparsity regularization for ill-posed subsurface flow inverse problems. Water Resources Research, 51(10), 8607–8626. https://doi.org/10.1002/2014WR016430

Gonzalez, M., Sladarriaga, G., & Jaramillo, O. (2010). Estimación de la demanda del agua: Conceptaulización y dimensionamiento de la demanda hídrica sectorial. Estudio Nacional Del Agua, 169–228.

Han, D., & Cao, G. (2018). Phase difference between groundwater storage changes and groundwater level fluctuations due to compaction of an aquifer-aquitard system. Journal of Hydrology, 566, 89–98. https://doi.org/10.1016/j.jhydrol.2018.09.010

Hassane Maina, F., Delay, F., & Ackerer, P. (2017). Estimating initial conditions for groundwater flow modeling using an adaptive inverse method. Journal of Hydrology, 552, 52–61. https://doi.org/10.1016/j.jhydrol.2017.06.041

Hernandez, A. F., Neuman, S. P., Guadagnini, A., & Carrera, J. (2003). Conditioning mean study state flow on hydraulic head and conductivity through geostatistical inversion. Stochastic Environmental Research and Risk Assessment, 17(5), 329–338. https://doi.org/10.1007/s00477-003-0154-4

Hu, L., & Jiao, J. J. (2015). Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China | Calage d’un modèle d’écoulement d’eau souterraine à grande échelle en utilisant les données GRACE: cas du Bassin de Qaidam, Chine | Calibração . Hydrogeology Journal, 23(7), 1305–1317. https://doi.org/10.1007/s10040-015-1278-6

Hughes, D. A. (2016). Hydrological modelling, process understanding and uncertainty in a southern African context: lessons from the northern hemisphere. Hydrological Processes, 30(14). https://doi.org/10.1002/hyp.10721

Ideam. (2014). Estudio Nacional del Agua 2014.

INGENIERIA GEOTEC, S. (2016). ESTUDIO DE IMPACTO AMBIENTAL PARA LAS ACTIVIDADES EXPLORATORIAS A DESARROLLARSE EN EL BLOQUE VMM-9. Bogota.

Ingeominas, I. C. D. G. Y. M. (2004). Programa de exploración de aguas subterráneas, 15. https://doi.org/Bajado el 3 de abril de 2011

Ingrain. (2012). CUENCA VALLE MEDIO DEL MAGDALENA -

Integración Geológica de la Digitalización y Análisis de Núcleos. ANH.

Irsa, J., & Zhang, Y. (2012). A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions. Water Resources Research, 48(9). https://doi.org/10.1029/2011WR011756

Islam, M. B., Firoz, A. B. M., Foglia, L., Marandi, A., Khan, A. R., Schüth, C., & Ribbe, L. (2017). A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh | Modèle régional d’écoulement des eaux souterraines pour une gestion durable des ressources en eaux souterraines dans la mé. Hydrogeology Journal, 25(3), 617–637. https://doi.org/10.1007/s10040-016-1526-4

Janetti, E. B., Riva, M., Straface, S., & Guadagnini, A. (2010). Stochastic characterization of the Montalto Uffugo research site (Italy) by geostatistical inversion of moment equations of groundwater flow. Journal of Hydrology, 381(1–2), 42–51. https://doi.org/10.1016/j.jhydrol.2009.11.023

Jardani, A., Dupont, J. P., Revil, A., Massei, N., Fournier, M., & Laignel, B. (2012). Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence. Journal of Hydrology, 472–473, 287–300. https://doi.org/10.1016/j.jhydrol.2012.09.031

Jiménez, S., Mariethoz, G., Brauchler, R., & Bayer, P. (2016). Smart pilot points using reversible-jump Markov-chain Monte Carlo. Water Resources Research, 52(5), 3966–3983. https://doi.org/10.1002/2015WR017922

Jung, Y., Ranjithan, R. S., & Mahinthakumar, G. (2011). Subsurface characterization using a D-optimality based pilot point method. Journal of Hydroinformatics, 13(4), 775–793. https://doi.org/10.2166/hydro.2010.111

Karay, G., & Hajnal, G. (2015). Modelling of Groundwater Flow in Fractured Rocks. Procedia Environmental Sciences, 25, 142–149. https://doi.org/https://doi.org/10.1016/j.proenv.2015.04.020

Kashyap, D., & Vakkalagadda, R. (2009). New model of variogram of groundwater hydraulic heads. Journal of Hydrologic Engineering, 14(8), 872–875. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000059

Klaas, D. K. S. Y., Imteaz, M. A., Sudiayem, I., Klaas, E. M. E., & Klaas, E. C. M. (2017). Novel approaches in sub-surface parameterisation to calibrate groundwater models. In IOP Conference Series: Earth and Environmental Science (Vol. 82). https://doi.org/10.1088/1755-1315/82/1/012014

Kpegli, K. A. R., Alassane, A., van der Zee, S. E. A. T. M., Boukari, M., & Mama, D. (2018). Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. Journal of Hydrology: Regional Studies, 18, 50–67. https://doi.org/10.1016/j.ejrh.2018.06.002

Le Ravalec-Dupin, M. (2010). Pilot block method methodology to calibrate stochastic permeability fields to dynamic data. Mathematical Geosciences, 42(2), 165–185. https://doi.org/10.1007/s11004-009-9249-x

Le Ravalec, M., & Mouche, E. (2012). Calibrating transmissivities from piezometric heads with the gradual deformation method: An application to the culebra dolomite unit at the waste isolation pilot plant (WIPP), New Mexico, USA. Journal of Hydrology, 472–473, 1–13. https://doi.org/10.1016/j.jhydrol.2012.08.053

Linde, N., Ginsbourger, D., Irving, J., Nobile, F., & Doucet, A. (2017). On uncertainty quantification in hydrogeology and hydrogeophysics. Advances in Water Resources, 110, 166–181. https://doi.org/10.1016/j.advwatres.2017.10.014

Linde, N., Renard, P., Mukerji, T., & Caers, J. (2015). Geological realism in hydrogeological and geophysical inverse modeling: A review. Advances in Water Resources, 86, 86–101. https://doi.org/10.1016/j.advwatres.2015.09.019

Llopis-Albert, C., Merigó, J. M., & Palacios-Marqués, D. (2015). Structure Adaptation in Stochastic Inverse Methods for Integrating Information. Water Resources Management, 29(1), 95–107. https://doi.org/10.1007/s11269-014-0829-2

Ma, W., & Jafarpour, B. (2017). Conditioning multiple-point geostatistical facies simulation on nonlinear flow data using pilot points method. In SPE Western Regional Meeting Proceedings (Vol. 2017-April, pp. 288–305).

Ma, W., & Jafarpour, B. (2018). An improved probability conditioning method for constraining multiple-point statistical facies simulation on nonlinear flow data. In SPE Western Regional Meeting Proceedings (Vol. 2018-April).

Maheswaran, R., Khosa, R., Gosain, A. K., Lahari, S., Sinha, S. K., Chahar, B. R., & Dhanya, C. T. (2016). Regional scale groundwater modelling study for Ganga River basin. Journal of Hydrology, 541, 727–741. https://doi.org/10.1016/j.jhydrol.2016.07.029

Marchant, B. P., & Bloomfield, J. P. (2018). Spatio-temporal modelling of the status of groundwater droughts. Journal of Hydrology, 564, 397–413. https://doi.org/10.1016/j.jhydrol.2018.07.009

Medina, A., Galarza, G., Carrera, J., Jódar, J., & Alcolea, A. (2001). The inverse problem in hydrogeology: Applications | El problema inverso en hidrología subterránea. Aplicaciones. Boletin Geologico y Minero, 112(SPECIAL ED), 93–106.

Meeks, J., Moeck, C., Brunner, P., & Hunkeler, D. (2017). Infiltration under snow cover: Modeling approaches and predictive uncertainty. Journal of Hydrology, 546, 16–27. https://doi.org/10.1016/j.jhydrol.2016.12.042

Merritt, W., Croke, B., & Jakeman, A. (2005). Sensitivity testing of a model for exploring water resources utilisation and management options. Environmental Modelling & Software, 20(8), 1013–1030. https://doi.org/10.1016/j.envsoft.2004.09.011

Mojica, J., & Franco, R. (1990). Estructura y Evolucion Tectonlca del Valle Medio y Superior del Magdalena, Colombia. Geología Colombiana, 17(17), 41–64.

Nash, J. E., & Barsi, B. I. (1983). A hybrid model for flow forecasting on large catchments. Journal of Hydrology, 65(1), 125–137. https://doi.org/10.1016/0022-1694(83)90213-5

Panzeri, M., Guadagnini, A., & Riva, M. (2012). Optimization of pilot points location for geostatistical inversion of groundwater flow. In IAHS-AISH Publication (Vol. 355, pp. 34–40).

Pescador-Arévalo, J. P., Arenas-Bautista, M. C., Donado, L. D., Guadagnini, A., & Riva, M. (2018). Three-dimensional geological model applied for groundwater flow simulations in the Middle Magdalena Valley, Colombia. In AGU Fall Meeting.

Pool, M., Carrera, J., Alcolea, A., & Bocanegra, E. M. (2015). A comparison of deterministic and stochastic approaches for regional scale inverse modeling on the Mar del Plata aquifer. Journal of Hydrology, 531, 214–229. https://doi.org/10.1016/j.jhydrol.2015.09.064

Riva, M., Guadagnini, A., Neuman, S. P., Janetti, E. B., & Malama, B. (2009). Inverse analysis of stochastic moment equations for transient flow in randomly heterogeneous media. Advances in Water Resources, 32(10), 1495–1507. https://doi.org/10.1016/j.advwatres.2009.07.003

Riva, M., Panzeri, M., Guadagnini, A., & Neuman, S. P. (2011). Role of model selection criteria in geostatistical inverse estimation of statistical data- and model-parameters. Water Resources Research, 47(7). https://doi.org/10.1029/2011WR010480

Sahoo, S., & Jha, M. K. (2017). Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India | Modélisation numérique des écoulements d’eau souterraine pour évaluer les . Hydrogeology Journal, 25(8), 2489–2511. https://doi.org/10.1007/s10040-017-1610-4

Sanchez-León, E., Leven, C., Haslauer, C. P., & Cirpka, O. A. (2016). Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization. Groundwater, 54(4), 498–507. https://doi.org/10.1111/gwat.12381

Şen, Z. (2015). Practical and Applied Hydrogeology. Practical and Applied Hydrogeology. Elsevier. https://doi.org/10.1016/B978-0-12-800075-5.00002-9

Sharma, A., Tiwari, K. N., & Bhadoria, P. B. S. (2011). Determining the optimum cell size of digital elevation model for hydrologic application. Journal of Earth System Science, 120(4).

Sheikholeslami, R., Yassin, F., Lindenschmidt, K.-E., & Razavi, S. (2017). Improved understanding of river ice processes using global sensitivity analysis approaches. Journal of Hydrologic Engineering, 22(11). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001574

Shewchuk, J. R. (1997). Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete and Computational Geometry, 18, 305–363.

Sieber, J., Yates, D., Huber-Lee, a., & Purkey, D. (2005). WEAP a demand, priority, and preference driven water planning model: Part 1, model characteristics. Water International, 30(4), 487–500. https://doi.org/10.1080/02508060508691893

Simmons, J. A., Harley, M. D., Marshall, L. A., Turner, I. L., Splinter, K. D., & Cox, R. J. (2017). Calibrating and assessing uncertainty in coastal numerical models. Coastal Engineering, 125. https://doi.org/10.1016/j.coastaleng.2017.04.005

Sun, D., Zhao, C., Wei, H., & Peng, D. (2011). Simulation of the relationship between land use and groundwater level in Tailan River basin, Xinjiang, China. Quaternary International, 244(2), 254–263. https://doi.org/10.1016/j.quaint.2010.08.017

Sun, N.-Z., & Sun, A. (2015). Model calibration and parameter estimation: For environmental and water resource systems. Model Calibration and Parameter Estimation: For Environmental and Water Resource Systems. https://doi.org/10.1007/978-1-4939-2323-6

Tiedeman, C. R., & Green, C. T. (2013). Effect of correlated observation error on parameters, predictions, and uncertainty. Water Resources Research, 49(10), 6339–6355. https://doi.org/10.1002/wrcr.20499

Tonkin, M., Doherty, J., & Moore, C. (2007). Efficient nonlinear predictive error variance for highly parameterized models. Water Resources Research, 43(7). https://doi.org/10.1029/2006WR005348

Tóth, Á., Havril, T., Simon, S., Galsa, A., Monteiro Santos, F. A., Müller, I., & Mádl-Szonyi, J. (2016). Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. Journal of Hydrology, 539, 330–344. https://doi.org/10.1016/j.jhydrol.2016.05.038

Trefry, M. G., & Muffels, C. (2007). FEFLOW: A Finite-Element Ground Water Flow and Transport Modeling Tool. Groundwater, 45(5), 525–528. https://doi.org/10.1111/j.1745-6584.2007.00358.x

Tsai, F. T.-C., & Yeh, W. W.-G. (2011). Model calibration and parameter structure identification in characterization of groundwater systems. Groundwater Quantity and Quality Management.

Usman, M., Reimann, T., Liedl, R., Abbas, A., Conrad, C., & Saleem, S. (2018). Inverse parametrization of a regional groundwater flow model with the aid of modelling and GIS: Test and application of different approaches. ISPRS International Journal of Geo-Information, 7(1). https://doi.org/10.3390/ijgi7010022

Usman, Muhammad, Liedl, R., & Kavousi, A. (2015). Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan. Environmental Earth Sciences, 74(2), 1463–1486. https://doi.org/10.1007/s12665-015-4139-7

Vargas Martínez, N. O., Campillo Pérez, A. K., García Herrán, M., & Jaramillo Rodríguez, O. (2013). Aguas Subterráneas en Colombia: una Visión General. Bogota: IDEAM.

Wang, T., Zhou, W., Chen, J., Xiao, X., Li, Y., & Zhao, X. (2014). Simulation of hydraulic fracturing using particle flow method and application in a coal mine. International Journal of Coal Geology, 121, 1–13.

Wang, X., Jardani, A., & Jourde, H. (2017). A hybrid inverse method for hydraulic tomography in fractured and karstic media. Journal of Hydrology, 551, 29–46. https://doi.org/10.1016/j.jhydrol.2017.05.051

White, J. T. (2018). A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environmental Modelling & Software, 109, 191–201. https://doi.org/10.1016/j.envsoft.2018.06.009

White, J. T., Fienen, M. N., & Doherty, J. E. (2016). A python framework for environmental model uncertainty analysis. Environmental Modelling & Software, 85, 217–228. https://doi.org/10.1016/j.envsoft.2016.08.017

Woodward, S. J. R., Wöhling, T., & Stenger, R. (2016). Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information. Journal of Hydrology, 534, 680–694. https://doi.org/10.1016/j.jhydrol.2016.01.045

Wu, Q., Liu, S., Cai, Y., Li, X., & Jiang, Y. (2017). Improvement of hydrological model calibration by selecting multiple parameter ranges. Hydrology and Earth System Sciences, 21(1). https://doi.org/10.5194/hess-21-393-2017

Xie, S., Hu, Y., Jiang, M., & Liu, Q. (2006). Study on the inverse method to permeability coefficient of groundwater system: A case study of uranium gangue site in Southern China. In 5th International Conference on Environmental Informatics, ISEIS 2006.

Yao, L., & Guo, Y. (2014). Hybrid algorithm for parameter estimation of the groundwater flow model with an improved genetic algorithm and gauss-newton method. Journal of Hydrologic Engineering, 19(3), 482–494. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000823

Yeh, T. C. J., Mao, D.-Q., Zha, Y.-Y., Wen, J.-C., Wan, L., Hsu, K.-C., & Lee, C.-H. (2015). Uniqueness, scale, and resolution issues in groundwater model parameter identification. Water Science and Engineering, 8(3), 175–194. https://doi.org/10.1016/j.wse.2015.08.002

Zhang, H., Li, Z., Saifullah, M., Li, Q., & Li, X. (2016). Impact of DEM Resolution and Spatial Scale: Analysis of Influence Factors and Parameters on Physically Based Distributed Model. Advances in Meteorology, 2016, 1–10. https://doi.org/10.1155/2016/8582041

Zhang, M., Burbey, T. J., Nunes, V. D. S., & Borggaard, J. (2014). A new zonation algorithm with parameter estimation using hydraulic head and subsidence observations. Groundwater, 52(4), 514–524. https://doi.org/10.1111/gwat.12102

Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014). Inverse methods in hydrogeology: Evolution and recent trends. Advances in Water Resources, 63, 22–37. https://doi.org/10.1016/j.advwatres.2013.10.014

How to Cite

APA

Arenas, M. C., Pescador, J. P., Donado, L. D., Saavedra, E. Y., & Arboleda Obando, P. F. (2020). Hydrogeological Modeling in Tropical Regions via FeFlow. Earth Sciences Research Journal, 24(3), 285-295. https://doi.org/10.15446/esrj.v24n3.80116

ACM

[1]
Arenas, M.C., Pescador, J.P., Donado, L.D., Saavedra, E.Y. and Arboleda Obando, P.F. 2020. Hydrogeological Modeling in Tropical Regions via FeFlow. Earth Sciences Research Journal. 24, 3 (Oct. 2020), 285-295. DOI:https://doi.org/10.15446/esrj.v24n3.80116.

ACS

(1)
Arenas, M. C.; Pescador, J. P.; Donado, L. D.; Saavedra, E. Y.; Arboleda Obando, P. F. Hydrogeological Modeling in Tropical Regions via FeFlow. Earth sci. res. j. 2020, 24, 285-295.

ABNT

ARENAS, M. C.; PESCADOR, J. P.; DONADO, L. D.; SAAVEDRA, E. Y.; ARBOLEDA OBANDO, P. F. Hydrogeological Modeling in Tropical Regions via FeFlow. Earth Sciences Research Journal, [S. l.], v. 24, n. 3, p. 285-295, 2020. DOI: 10.15446/esrj.v24n3.80116. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/80116. Acesso em: 28 nov. 2021.

Chicago

Arenas, Maria Cristina, Juan Pablo Pescador, Leonardo David Donado, Edwin Yesid Saavedra, and Pedro Felipe Arboleda Obando. 2020. “Hydrogeological Modeling in Tropical Regions via FeFlow”. Earth Sciences Research Journal 24 (3):285-95. https://doi.org/10.15446/esrj.v24n3.80116.

Harvard

Arenas, M. C., Pescador, J. P., Donado, L. D., Saavedra, E. Y. and Arboleda Obando, P. F. (2020) “Hydrogeological Modeling in Tropical Regions via FeFlow”, Earth Sciences Research Journal, 24(3), pp. 285-295. doi: 10.15446/esrj.v24n3.80116.

IEEE

[1]
M. C. Arenas, J. P. Pescador, L. D. Donado, E. Y. Saavedra, and P. F. Arboleda Obando, “Hydrogeological Modeling in Tropical Regions via FeFlow”, Earth sci. res. j., vol. 24, no. 3, pp. 285-295, Oct. 2020.

MLA

Arenas, M. C., J. P. Pescador, L. D. Donado, E. Y. Saavedra, and P. F. Arboleda Obando. “Hydrogeological Modeling in Tropical Regions via FeFlow”. Earth Sciences Research Journal, vol. 24, no. 3, Oct. 2020, pp. 285-9, doi:10.15446/esrj.v24n3.80116.

Turabian

Arenas, Maria Cristina, Juan Pablo Pescador, Leonardo David Donado, Edwin Yesid Saavedra, and Pedro Felipe Arboleda Obando. “Hydrogeological Modeling in Tropical Regions via FeFlow”. Earth Sciences Research Journal 24, no. 3 (October 12, 2020): 285-295. Accessed November 28, 2021. https://revistas.unal.edu.co/index.php/esrj/article/view/80116.

Vancouver

1.
Arenas MC, Pescador JP, Donado LD, Saavedra EY, Arboleda Obando PF. Hydrogeological Modeling in Tropical Regions via FeFlow. Earth sci. res. j. [Internet]. 2020Oct.12 [cited 2021Nov.28];24(3):285-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/80116

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Downloads

Download data is not yet available.

Article abstract page views

351