Published
Hydrogeological Modeling in Tropical Regions via FeFlow
Modelación hidrogeológica en regiones tropicales a través de Feflow
DOI:
https://doi.org/10.15446/esrj.v24n3.80116Keywords:
groundwater, sensitivity analysis, pilot-points technique, PEST, inverse parameterization (en)Agua subterránea, análisis de sensibilidad, técnica de puntos piloto, PEST, parametrización inversa (es)
Downloads
References
Alberti, L., Colombo, L., & Formentin, G. (2018). Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area. Science of The Total Environment, 621, 326–339. https://doi.org/10.1016/j.scitotenv.2017.11.253
Alcolea, A., Carrera, J., & Medina, A. (2006). Inversion of heterogeneous parabolic-type equations using the pilot points method. International Journal for Numerical Methods in Fluids, 51(9–10), 963–980. https://doi.org/10.1002/fld.1213
Alcolea, A., Carrera, J., & Medina, A. (2008). Regularized pilot points method for reproducing the effect of small scale variability: Application to simulations of contaminant transport. Journal of Hydrology, 355(1–4), 76–90. https://doi.org/10.1016/j.jhydrol.2008.03.004
Alcolea, Andrés, Carrera, J., & Medina, A. (2006). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11), 1678–1689. https://doi.org/10.1016/j.advwatres.2005.12.009
Amini, M., Johnson, A., Abbaspour, K. C., & Mueller, K. (2009). Modeling large scale geogenic contamination of groundwater, combination of geochemical expertise and statistical techniques. (R. S. Anderssen, R. D. Braddock, & L. T. H. Newham, Eds.), 18th World Imacs Congress and Modsim09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences. Univ Western Australia.
Arenas-Bautista, M. C., Arboleda Obando, P. F., Duque-Gardeazábal, N., Guadagnini, A., Riva, M., & Donado-Garzón, L. D. (2017). Hydrological Modelling the Middle Magdalena Valley (Colombia). In AGU. New Orleans.
Arismendy, R. D., Salazar, J. F., Vélez, M. V., & Caballero, H. (2004). Evaluación del potencial acuífero de los municipios de Puerto Berrío y Puerto Nare. Congreso Colombiano de Hidrogeología, 19. https://doi.org/bdigital.unal.edu.co/4441/
Asociacion Colombiana del Petroleo, & Asociacion Latinoamericana de la Industria Petrolera. (2008). Historia del Petróleo En Colombia, 4.
Betancur, T., Mejia, O., & Palacio, C. (2009). Conceptual hydrogeology model to Bajo Cauca antioqueño: a tropical aquifer system. Revista Facultad de Ingeniería, 48, 107–118. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0120-62302009000200011&script=sci_arttext
Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., & Slooten, L. J. (2005). Inverse problem in hydrogeology. Hydrogeology Journal, 13(1), 206–222. https://doi.org/10.1007/s10040-004-0404-7
Carrera, J., Hidalgo, J. J., Slooten, L. J., & Vázquez-Suñé, E. (2010). Computational and conceptual issues in the calibration of seawater intrusion models | Problèmes conceptuels et de calibration des modèles d’intrusion marines. Hydrogeology Journal, 18(1), 131–145. https://doi.org/10.1007/s10040-009-0524-1
Carrera, J., Mousavi, S. F., Usunoff, E. J., Sánchez-Vila, X., & Galarza, G. (1993). A discussion on validation of hydrogeological models. Reliability Engineering and System Safety, 42(2–3), 201–216. https://doi.org/10.1016/0951-8320(93)90089-H
Chen, M., Izady, A., Abdalla, O. A., & Amerjeed, M. (2018). A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model. Journal of Hydrology, 557, 826–837. https://doi.org/10.1016/j.jhydrol.2017.12.071
Cherry, J. A., Parker, B. L., Bradbury, K. R., Eaton, T. T., Gotkowitz, M. G., Hart, D. J., & Borchardt, M. A. (2004). Role of Aquitards in the Protection of Aquifers from Contamination: A “State of the Science” Report. AWWA Research Foundation Report, 1–144. Retrieved from papers2://publication/uuid/77A8479D-E189-4E10-8F87-9228DE7BA417
Christensen, S., & Doherty, J. (2008). Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration. Advances in Water Resources, 31(4), 674–700. https://doi.org/10.1016/j.advwatres.2008.01.003
Comunian, A., & Renard, P. (2009). Introducing wwhypda: A world-wide collaborative hydrogeological parameters database. Hydrogeology Journal, 17(2), 481–489. https://doi.org/10.1007/s10040-008-0387-x
Custodio, E., Andreu-Rodes, J. M., Aragón, R., Estrela, T., Ferrer, J., García-Aróstegui, J. L., … Del Villar, A. (2016). Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. The Science of the Total Environment, 559, 302–316. https://doi.org/10.1016/j.scitotenv.2016.02.107
Dewandel, B., Maréchal, J. C., Bour, O., Ladouche, B., Ahmed, S., Chandra, S., & Pauwels, H. (2012). Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. Journal of Hydrology, 416–417, 83–97. https://doi.org/10.1016/j.jhydrol.2011.11.038
Dewandel, Benoît, Jeanpert, J., Ladouche, B., Join, J. L., & Maréchal, J. C. (2017). Inferring the heterogeneity, transmissivity and hydraulic conductivity of crystalline aquifers from a detailed water-table map. Journal of Hydrology, 550, 118–129. https://doi.org/10.1016/j.jhydrol.2017.03.075
ECOPETROL. (2016). Estudio De Impacto Ambiental Para La Solicitud De La Licencia Ambiental Del Área De Perforación Exploratoria Guane-A. Bogota.
Ehtiat, M., Mousavi, S. J., & Ghaheri, A. (2015). Ranking of conceptualized groundwater models based on model information criteria. Journal of Water Supply: Research and Technology - AQUA, 64(6), 670–687. https://doi.org/10.2166/aqua.2015.109
Finsterle, S., & Kowalsky, M. B. (2011). A truncated Levenberg-Marquardt algorithm for the calibration of highly parameterized nonlinear models. Computers and Geosciences, 37(6), 731–738. https://doi.org/10.1016/j.cageo.2010.11.005
Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.
Friedel, M. J., & Iwashita, F. (2013). Hybrid modeling of spatial continuity for application to numerical inverse problems. Environmental Modelling and Software, 43, 60–79. https://doi.org/10.1016/j.envsoft.2013.01.009
Gaganis, P., & Smith, L. (2006). Evaluation of the uncertainty of groundwater model predictions associated with conceptual errors: A per-datum approach to model calibration. Advances in Water Resources, 29(4), 503–514. https://doi.org/10.1016/j.advwatres.2005.06.006
Gallego, J., Jaramillo, H., & Patiño, A. (2015). Servicios intensivos en conocimiento en la industria del petróleo en Colombia.
Gan, Y., Liang, X.-Z., Duan, Q., Ye, A., Di, Z., Hong, Y., & Li, J. (2018). A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. Journal of Hydrology, 564, 697–711. https://doi.org/10.1016/j.jhydrol.2018.07.055
Gogu, R., Carabin, G., Hallet, V., Peters, V., & Dassargues, A. (2001). GIS-based hydrogeological databases and groundwater modelling. Hydrogeology Journal, 9(6), 555–569. https://doi.org/10.1007/s10040-001-0167-3
Golmohammadi, A., Khaninezhad, M.-R. M., & Jafarpour, B. (2015). Group-sparsity regularization for ill-posed subsurface flow inverse problems. Water Resources Research, 51(10), 8607–8626. https://doi.org/10.1002/2014WR016430
Gonzalez, M., Sladarriaga, G., & Jaramillo, O. (2010). Estimación de la demanda del agua: Conceptaulización y dimensionamiento de la demanda hídrica sectorial. Estudio Nacional Del Agua, 169–228.
Han, D., & Cao, G. (2018). Phase difference between groundwater storage changes and groundwater level fluctuations due to compaction of an aquifer-aquitard system. Journal of Hydrology, 566, 89–98. https://doi.org/10.1016/j.jhydrol.2018.09.010
Hassane Maina, F., Delay, F., & Ackerer, P. (2017). Estimating initial conditions for groundwater flow modeling using an adaptive inverse method. Journal of Hydrology, 552, 52–61. https://doi.org/10.1016/j.jhydrol.2017.06.041
Hernandez, A. F., Neuman, S. P., Guadagnini, A., & Carrera, J. (2003). Conditioning mean study state flow on hydraulic head and conductivity through geostatistical inversion. Stochastic Environmental Research and Risk Assessment, 17(5), 329–338. https://doi.org/10.1007/s00477-003-0154-4
Hu, L., & Jiao, J. J. (2015). Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China | Calage d’un modèle d’écoulement d’eau souterraine à grande échelle en utilisant les données GRACE: cas du Bassin de Qaidam, Chine | Calibração . Hydrogeology Journal, 23(7), 1305–1317. https://doi.org/10.1007/s10040-015-1278-6
Hughes, D. A. (2016). Hydrological modelling, process understanding and uncertainty in a southern African context: lessons from the northern hemisphere. Hydrological Processes, 30(14). https://doi.org/10.1002/hyp.10721
Ideam. (2014). Estudio Nacional del Agua 2014.
INGENIERIA GEOTEC, S. (2016). ESTUDIO DE IMPACTO AMBIENTAL PARA LAS ACTIVIDADES EXPLORATORIAS A DESARROLLARSE EN EL BLOQUE VMM-9. Bogota.
Ingeominas, I. C. D. G. Y. M. (2004). Programa de exploración de aguas subterráneas, 15. https://doi.org/Bajado el 3 de abril de 2011
Ingrain. (2012). CUENCA VALLE MEDIO DEL MAGDALENA -
Integración Geológica de la Digitalización y Análisis de Núcleos. ANH.
Irsa, J., & Zhang, Y. (2012). A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions. Water Resources Research, 48(9). https://doi.org/10.1029/2011WR011756
Islam, M. B., Firoz, A. B. M., Foglia, L., Marandi, A., Khan, A. R., Schüth, C., & Ribbe, L. (2017). A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh | Modèle régional d’écoulement des eaux souterraines pour une gestion durable des ressources en eaux souterraines dans la mé. Hydrogeology Journal, 25(3), 617–637. https://doi.org/10.1007/s10040-016-1526-4
Janetti, E. B., Riva, M., Straface, S., & Guadagnini, A. (2010). Stochastic characterization of the Montalto Uffugo research site (Italy) by geostatistical inversion of moment equations of groundwater flow. Journal of Hydrology, 381(1–2), 42–51. https://doi.org/10.1016/j.jhydrol.2009.11.023
Jardani, A., Dupont, J. P., Revil, A., Massei, N., Fournier, M., & Laignel, B. (2012). Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence. Journal of Hydrology, 472–473, 287–300. https://doi.org/10.1016/j.jhydrol.2012.09.031
Jiménez, S., Mariethoz, G., Brauchler, R., & Bayer, P. (2016). Smart pilot points using reversible-jump Markov-chain Monte Carlo. Water Resources Research, 52(5), 3966–3983. https://doi.org/10.1002/2015WR017922
Jung, Y., Ranjithan, R. S., & Mahinthakumar, G. (2011). Subsurface characterization using a D-optimality based pilot point method. Journal of Hydroinformatics, 13(4), 775–793. https://doi.org/10.2166/hydro.2010.111
Karay, G., & Hajnal, G. (2015). Modelling of Groundwater Flow in Fractured Rocks. Procedia Environmental Sciences, 25, 142–149. https://doi.org/https://doi.org/10.1016/j.proenv.2015.04.020
Kashyap, D., & Vakkalagadda, R. (2009). New model of variogram of groundwater hydraulic heads. Journal of Hydrologic Engineering, 14(8), 872–875. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000059
Klaas, D. K. S. Y., Imteaz, M. A., Sudiayem, I., Klaas, E. M. E., & Klaas, E. C. M. (2017). Novel approaches in sub-surface parameterisation to calibrate groundwater models. In IOP Conference Series: Earth and Environmental Science (Vol. 82). https://doi.org/10.1088/1755-1315/82/1/012014
Kpegli, K. A. R., Alassane, A., van der Zee, S. E. A. T. M., Boukari, M., & Mama, D. (2018). Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. Journal of Hydrology: Regional Studies, 18, 50–67. https://doi.org/10.1016/j.ejrh.2018.06.002
Le Ravalec-Dupin, M. (2010). Pilot block method methodology to calibrate stochastic permeability fields to dynamic data. Mathematical Geosciences, 42(2), 165–185. https://doi.org/10.1007/s11004-009-9249-x
Le Ravalec, M., & Mouche, E. (2012). Calibrating transmissivities from piezometric heads with the gradual deformation method: An application to the culebra dolomite unit at the waste isolation pilot plant (WIPP), New Mexico, USA. Journal of Hydrology, 472–473, 1–13. https://doi.org/10.1016/j.jhydrol.2012.08.053
Linde, N., Ginsbourger, D., Irving, J., Nobile, F., & Doucet, A. (2017). On uncertainty quantification in hydrogeology and hydrogeophysics. Advances in Water Resources, 110, 166–181. https://doi.org/10.1016/j.advwatres.2017.10.014
Linde, N., Renard, P., Mukerji, T., & Caers, J. (2015). Geological realism in hydrogeological and geophysical inverse modeling: A review. Advances in Water Resources, 86, 86–101. https://doi.org/10.1016/j.advwatres.2015.09.019
Llopis-Albert, C., Merigó, J. M., & Palacios-Marqués, D. (2015). Structure Adaptation in Stochastic Inverse Methods for Integrating Information. Water Resources Management, 29(1), 95–107. https://doi.org/10.1007/s11269-014-0829-2
Ma, W., & Jafarpour, B. (2017). Conditioning multiple-point geostatistical facies simulation on nonlinear flow data using pilot points method. In SPE Western Regional Meeting Proceedings (Vol. 2017-April, pp. 288–305).
Ma, W., & Jafarpour, B. (2018). An improved probability conditioning method for constraining multiple-point statistical facies simulation on nonlinear flow data. In SPE Western Regional Meeting Proceedings (Vol. 2018-April).
Maheswaran, R., Khosa, R., Gosain, A. K., Lahari, S., Sinha, S. K., Chahar, B. R., & Dhanya, C. T. (2016). Regional scale groundwater modelling study for Ganga River basin. Journal of Hydrology, 541, 727–741. https://doi.org/10.1016/j.jhydrol.2016.07.029
Marchant, B. P., & Bloomfield, J. P. (2018). Spatio-temporal modelling of the status of groundwater droughts. Journal of Hydrology, 564, 397–413. https://doi.org/10.1016/j.jhydrol.2018.07.009
Medina, A., Galarza, G., Carrera, J., Jódar, J., & Alcolea, A. (2001). The inverse problem in hydrogeology: Applications | El problema inverso en hidrología subterránea. Aplicaciones. Boletin Geologico y Minero, 112(SPECIAL ED), 93–106.
Meeks, J., Moeck, C., Brunner, P., & Hunkeler, D. (2017). Infiltration under snow cover: Modeling approaches and predictive uncertainty. Journal of Hydrology, 546, 16–27. https://doi.org/10.1016/j.jhydrol.2016.12.042
Merritt, W., Croke, B., & Jakeman, A. (2005). Sensitivity testing of a model for exploring water resources utilisation and management options. Environmental Modelling & Software, 20(8), 1013–1030. https://doi.org/10.1016/j.envsoft.2004.09.011
Mojica, J., & Franco, R. (1990). Estructura y Evolucion Tectonlca del Valle Medio y Superior del Magdalena, Colombia. Geología Colombiana, 17(17), 41–64.
Nash, J. E., & Barsi, B. I. (1983). A hybrid model for flow forecasting on large catchments. Journal of Hydrology, 65(1), 125–137. https://doi.org/10.1016/0022-1694(83)90213-5
Panzeri, M., Guadagnini, A., & Riva, M. (2012). Optimization of pilot points location for geostatistical inversion of groundwater flow. In IAHS-AISH Publication (Vol. 355, pp. 34–40).
Pescador-Arévalo, J. P., Arenas-Bautista, M. C., Donado, L. D., Guadagnini, A., & Riva, M. (2018). Three-dimensional geological model applied for groundwater flow simulations in the Middle Magdalena Valley, Colombia. In AGU Fall Meeting.
Pool, M., Carrera, J., Alcolea, A., & Bocanegra, E. M. (2015). A comparison of deterministic and stochastic approaches for regional scale inverse modeling on the Mar del Plata aquifer. Journal of Hydrology, 531, 214–229. https://doi.org/10.1016/j.jhydrol.2015.09.064
Riva, M., Guadagnini, A., Neuman, S. P., Janetti, E. B., & Malama, B. (2009). Inverse analysis of stochastic moment equations for transient flow in randomly heterogeneous media. Advances in Water Resources, 32(10), 1495–1507. https://doi.org/10.1016/j.advwatres.2009.07.003
Riva, M., Panzeri, M., Guadagnini, A., & Neuman, S. P. (2011). Role of model selection criteria in geostatistical inverse estimation of statistical data- and model-parameters. Water Resources Research, 47(7). https://doi.org/10.1029/2011WR010480
Sahoo, S., & Jha, M. K. (2017). Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India | Modélisation numérique des écoulements d’eau souterraine pour évaluer les . Hydrogeology Journal, 25(8), 2489–2511. https://doi.org/10.1007/s10040-017-1610-4
Sanchez-León, E., Leven, C., Haslauer, C. P., & Cirpka, O. A. (2016). Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization. Groundwater, 54(4), 498–507. https://doi.org/10.1111/gwat.12381
Şen, Z. (2015). Practical and Applied Hydrogeology. Practical and Applied Hydrogeology. Elsevier. https://doi.org/10.1016/B978-0-12-800075-5.00002-9
Sharma, A., Tiwari, K. N., & Bhadoria, P. B. S. (2011). Determining the optimum cell size of digital elevation model for hydrologic application. Journal of Earth System Science, 120(4).
Sheikholeslami, R., Yassin, F., Lindenschmidt, K.-E., & Razavi, S. (2017). Improved understanding of river ice processes using global sensitivity analysis approaches. Journal of Hydrologic Engineering, 22(11). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001574
Shewchuk, J. R. (1997). Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete and Computational Geometry, 18, 305–363.
Sieber, J., Yates, D., Huber-Lee, a., & Purkey, D. (2005). WEAP a demand, priority, and preference driven water planning model: Part 1, model characteristics. Water International, 30(4), 487–500. https://doi.org/10.1080/02508060508691893
Simmons, J. A., Harley, M. D., Marshall, L. A., Turner, I. L., Splinter, K. D., & Cox, R. J. (2017). Calibrating and assessing uncertainty in coastal numerical models. Coastal Engineering, 125. https://doi.org/10.1016/j.coastaleng.2017.04.005
Sun, D., Zhao, C., Wei, H., & Peng, D. (2011). Simulation of the relationship between land use and groundwater level in Tailan River basin, Xinjiang, China. Quaternary International, 244(2), 254–263. https://doi.org/10.1016/j.quaint.2010.08.017
Sun, N.-Z., & Sun, A. (2015). Model calibration and parameter estimation: For environmental and water resource systems. Model Calibration and Parameter Estimation: For Environmental and Water Resource Systems. https://doi.org/10.1007/978-1-4939-2323-6
Tiedeman, C. R., & Green, C. T. (2013). Effect of correlated observation error on parameters, predictions, and uncertainty. Water Resources Research, 49(10), 6339–6355. https://doi.org/10.1002/wrcr.20499
Tonkin, M., Doherty, J., & Moore, C. (2007). Efficient nonlinear predictive error variance for highly parameterized models. Water Resources Research, 43(7). https://doi.org/10.1029/2006WR005348
Tóth, Á., Havril, T., Simon, S., Galsa, A., Monteiro Santos, F. A., Müller, I., & Mádl-Szonyi, J. (2016). Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction. Journal of Hydrology, 539, 330–344. https://doi.org/10.1016/j.jhydrol.2016.05.038
Trefry, M. G., & Muffels, C. (2007). FEFLOW: A Finite-Element Ground Water Flow and Transport Modeling Tool. Groundwater, 45(5), 525–528. https://doi.org/10.1111/j.1745-6584.2007.00358.x
Tsai, F. T.-C., & Yeh, W. W.-G. (2011). Model calibration and parameter structure identification in characterization of groundwater systems. Groundwater Quantity and Quality Management.
Usman, M., Reimann, T., Liedl, R., Abbas, A., Conrad, C., & Saleem, S. (2018). Inverse parametrization of a regional groundwater flow model with the aid of modelling and GIS: Test and application of different approaches. ISPRS International Journal of Geo-Information, 7(1). https://doi.org/10.3390/ijgi7010022
Usman, Muhammad, Liedl, R., & Kavousi, A. (2015). Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan. Environmental Earth Sciences, 74(2), 1463–1486. https://doi.org/10.1007/s12665-015-4139-7
Vargas Martínez, N. O., Campillo Pérez, A. K., García Herrán, M., & Jaramillo Rodríguez, O. (2013). Aguas Subterráneas en Colombia: una Visión General. Bogota: IDEAM.
Wang, T., Zhou, W., Chen, J., Xiao, X., Li, Y., & Zhao, X. (2014). Simulation of hydraulic fracturing using particle flow method and application in a coal mine. International Journal of Coal Geology, 121, 1–13.
Wang, X., Jardani, A., & Jourde, H. (2017). A hybrid inverse method for hydraulic tomography in fractured and karstic media. Journal of Hydrology, 551, 29–46. https://doi.org/10.1016/j.jhydrol.2017.05.051
White, J. T. (2018). A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environmental Modelling & Software, 109, 191–201. https://doi.org/10.1016/j.envsoft.2018.06.009
White, J. T., Fienen, M. N., & Doherty, J. E. (2016). A python framework for environmental model uncertainty analysis. Environmental Modelling & Software, 85, 217–228. https://doi.org/10.1016/j.envsoft.2016.08.017
Woodward, S. J. R., Wöhling, T., & Stenger, R. (2016). Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information. Journal of Hydrology, 534, 680–694. https://doi.org/10.1016/j.jhydrol.2016.01.045
Wu, Q., Liu, S., Cai, Y., Li, X., & Jiang, Y. (2017). Improvement of hydrological model calibration by selecting multiple parameter ranges. Hydrology and Earth System Sciences, 21(1). https://doi.org/10.5194/hess-21-393-2017
Xie, S., Hu, Y., Jiang, M., & Liu, Q. (2006). Study on the inverse method to permeability coefficient of groundwater system: A case study of uranium gangue site in Southern China. In 5th International Conference on Environmental Informatics, ISEIS 2006.
Yao, L., & Guo, Y. (2014). Hybrid algorithm for parameter estimation of the groundwater flow model with an improved genetic algorithm and gauss-newton method. Journal of Hydrologic Engineering, 19(3), 482–494. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000823
Yeh, T. C. J., Mao, D.-Q., Zha, Y.-Y., Wen, J.-C., Wan, L., Hsu, K.-C., & Lee, C.-H. (2015). Uniqueness, scale, and resolution issues in groundwater model parameter identification. Water Science and Engineering, 8(3), 175–194. https://doi.org/10.1016/j.wse.2015.08.002
Zhang, H., Li, Z., Saifullah, M., Li, Q., & Li, X. (2016). Impact of DEM Resolution and Spatial Scale: Analysis of Influence Factors and Parameters on Physically Based Distributed Model. Advances in Meteorology, 2016, 1–10. https://doi.org/10.1155/2016/8582041
Zhang, M., Burbey, T. J., Nunes, V. D. S., & Borggaard, J. (2014). A new zonation algorithm with parameter estimation using hydraulic head and subsidence observations. Groundwater, 52(4), 514–524. https://doi.org/10.1111/gwat.12102
Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014). Inverse methods in hydrogeology: Evolution and recent trends. Advances in Water Resources, 63, 22–37. https://doi.org/10.1016/j.advwatres.2013.10.014
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Ahmed Shalby, Bakenaz A. Zeidan, Katarzyna Pietrucha-Urbanik, Abdelazim M. Negm, Asaad M. Armanuos. (2024). Modelling Approach for Assessment of Groundwater Potential of the Moghra Aquifer, Egypt, for Extensive Rural Development. Water, 16(11), p.1562. https://doi.org/10.3390/w16111562.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.