Published
Influence of metal roadway supports on transient electromagnetic detection in mines
Influencia de los soportes metálicos en la calzada para la detección de electromagnetismo transitorio en minas
DOI:
https://doi.org/10.15446/esrj.v25n1.80156Keywords:
Mine transient electromagnetic method, finite difference time domain, metal support, numerical analysis. (en)método de electromagnetismo transitorio en minas, método electromagnético en el dominio del tiempo, soporte de metal, análisis numérico (es)
Downloads
To study the influence of metal supports in roadways on the detection of mines using the transient electromagnetic method, authors treated metal supports including anchor nets as a thin metal layer. According to the finite differences principle, the characteristics of the full-space transient electromagnetic response under the thin metal layer’s influence were calculated using a non-uniform grid. The thin metal layer’s presence slowed the electromagnetic field’s diffusion rate and hindered the overall diffusion. The transient electromagnetic response curve observed under the thin metal layer’s influence was higher than that without the supports. Thicker metal layers resulted in higher early response values and slower decay rates. The decay rate increased as a function of time, gradually approaching that of the curve without metal supports. The simulation of the transient electromagnetic response to the model of water-containing low-resistance structures showed that the metal roadway support reduced the sensitivity of the transient electromagnetic method and weakened its response to low-resistance anomalies.
Con el fin de estudiar la influencia de los soportes metálicos en las calzadas para detectar minas a través del método de electromagnetismo transitorio, los autores trataron estos soportes como capas finas de metal, incluidas las mallas de anclaje. De acuerdo con los principios de las diferencias finitas, las características de reacción del electromagnetismo transitorio bajo la incidencia de una capa fina de metal se calcularon con una cuadrícula no uniforme. La presencia de esta capa ralentizó el índice de difusión del campo electromagnético y dificultó la difusión en general. El resultado de la curva de reacción del electromagnetismo transitorio bajo la incidencia de la capa fina de metal fue mayor que en calzadas sin estos soportes. Las capas más finas tienen valores de respuestas mayores e índices de deterioro menores. El índice de deterioro se incrementa como una función del tiempo, y se aproxima gradualmente a la curva de reacción de una calzada sin soportes. La simulación de la reacción del electromagnetismo transitorio en el modelo de estructuras de baja resistencia a contenidos de agua muestra que los soportes metálicos reducen la sensibilidad del método electromagnético transitorio y debilita su reacción a anomalías de baja resistencia.
References
Chang, J., Yu, J. & Liu, Z. (2016). Three-dimensional numerical modelling of full-space transient electromagnetic responses of water in goaf. Applied Geophysics, 3, 539-552.
Chang, J., Su, B., & Malekian, R. (2020). Detection of Water-Filled Mining Goaf Using Mining Transient Electromagnetic Method. IEE Transactions on Industrial Informatics, 16(5), 2977-2984.
Cheng, J., Chen, D. & Xue, G. (2016). Synthetic aperture imaging in advanced detection of roadway using the mine transient electromagnetic method. Chinese Journal of Geophysics, 59(2), 731-738.
Danielsen, J. E., Auken, J. E., Sondergaard, V. & Sorensen, K. I. (2003). The application of the transient, electromagnetic method in hydrogeophysical surveys. Journal of Applied Geophysics, 53(4), 181-198.
Elsherbeni, A. & Demir V. (2006). The Finite-Difference Time-Domain Method in Electromagnetics: with MATLAB. Raleigh: Scitech Publishing.
Huang, L., Liu, S., Wang, B. & Zhou, F. (2017). Quantitative Calculation of Aquifer Water Quantity Using TEM Data. Earth Sciences Research Journal, 21(1), 51-56.
Jin, J., & Wang, S. (2018). Study on the Low Resistance Interference Test of Coal Mine Transient Electromagnetic. Mining safety and environmental protection, 45(1), 93-97.
Liu, Y. (2014). Study on the Application Effect of Mine Transient Electromagnetic Technology under the Metal Interference. China University of Mining and Technology.
Liu, Z., Huang, W., & Huang, J. (2016). Interference of Metal Materials in Tunnels on the Detection Results by Transient Electromagnetic Method. Modern Tunnelling Technology, 53(4), 116-122.
Su, B., Yu, J., Sheng, C., & Zhang, Y. (2017). Maxwell-equations based on mining transient electromagnetic method for coal mine-disaster water. Elektronika ir Elektrotechnika, 23(3), 20-23.
Sun, H., Li, X., & Li, S. C. (2013). Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time. Chinese Journal of Geophysics, 56(3), 1049-1064.
Wang, B., Liu, S., Li, S. & Zhou, F. (2017a). Double-transmitting and sextuple-receiving borehole transient electromagnetic method and experimental study. Earth Sciences Research Journal, 21(2), 77-83.
Wang, B., Liu, S., Zhou, F., Zhang, J., & Zheng, F. (2017b). Diffraction characteristics of small fault ahead of tunnel face in coal roadway. Earth Sciences Research Journal, 21(2), 95-99.
Wu, Q. (2014). Progress, problems and prospects of prevention and control technology of mine water and reutilization in China. Journal of China Coal Society, 39(5), 795-805.
Xue, G. & Yu, J. (2017). New development of TEM research and application in coal mine exploration (in Chinese). Progress in Geophysics, 32(1), 0319-0326.
Yan, S., Chen, M. & Fu, J. M. (2002). Direct time-domain numerical analysis of transient electromagnetic fields. Chinese Journal of Geophysics, 45(2), 275-284.
Yan, S. & Shi, X. (2004). Thin bed and wires modeling in transient electromagnetic fields FDTD computation of tunnel whole-space. Coal Geology and Exploration, 32(s1), 87-89.
Yang, H. & Yue, J. H. (2009). Application of absorbing boundary condition in whole-space computation of transient electromagnetic response. Journal of China University of Mining and Technology, 38(2), 263-268.
Yu, J., Liu, S. & Wang, Y. (2008). Response characteristic of transient electromagnetic to metallic facilities in coal mines and the disposal technology. Journal of China Coal Society, 33(12), 1403-1407.
Yue, J., Yang, H. & Hu B. (2008). 3D finite difference time domain numerical simulation for TEM in-mine (in Chinese). Progress in Geophysics 22(6), 1904-1909.
Zhou, S., Yu, J. & Jiang, Z. (2014). Study of Mine Transient Electromagnetic response characteristics and correction method under support using bolt and wire mesh. China Coal, 4, 45-48.
Zhou, J., Cheng, J. & Wen, L. (2017). Response characteristics of metallic facilities and correction method on mine transient electromagnetic surveying. Journal of the China Coal Society, 26(8), 146-150.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2021 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.