Published
Application of Artificial Intelligence in Lithology Recognition of Petroleum Logging in Low Permeability Reservoirs
Aplicación de la inteligencia artificial en reconocimiento litológico de extracción de petróleo en yacimientos de baja permeabilidad
DOI:
https://doi.org/10.15446/esrj.v25n2.80895Keywords:
Artificial intelligence, Low permeability reservoir, Petroleum logging, Lithology identification (en)Inteligencia artificial, Embalse de baja permeabilidad, Explotación de petróleo, Identificación de litología (es)
Downloads
In low permeability reservoirs, the conversion accuracy of the existing petroleum logging lithology identification method to small pore capillary pressure curve is not high, resulting in a low rock mass identification accuracy. Therefore, artificial intelligence technology is considered in this study to enhance the accuracy of lithology identification in low permeability reservoirs. Firstly, the radar mapping program is used to predict the position of reservoir oil logging, and then the small pore capillary pressure curve is converted by using the conversion method of piecewise power function scale to obtain the pore characteristics of low-permeability reservoir rocks. On this basis, the crossplot method is used to gather the pore characteristic data in well logging and form a plan, and the response parameters of well logging rock mass are obtained to realize the identification and analysis of lithology. The experimental results show that, compared with the existing identification methods, the accuracy of lithology identification in low-permeability reservoir logging is significantly increased after the application of artificial intelligence technology, and the identification process takes less time, which fully proves that the application of artificial intelligence technology is conducive to improving the performance of lithology identification.
En los yacimientos de baja permeabilidad, la precisión de conversión del método de identificación de litología de extracción de petróleo existente a la curva de presión capilar de poros pequeños no es alta, lo que da como resultado una baja precisión de identificación del macizo rocoso. Por lo tanto, en este estudio se considera la tecnología de inteligencia artificial para mejorar la precisión de la identificación litológica en yacimientos de baja permeabilidad. En primer lugar, el programa de mapeo de radar se usa para predecir la posición del registro de petróleo del yacimiento, y luego la curva de presión capilar de poros pequeños se convierte utilizando el método de conversión de la escala de función de potencia por partes para obtener las características de los poros de las rocas del yacimiento de baja permeabilidad. Sobre esta base, se utiliza el método de parcelas cruzadas para recopilar los datos característicos de los poros en el registro de pozos y formar un plan, y se obtienen los parámetros de respuesta del macizo rocoso del registro de pozos para realizar la identificación y análisis de la litología. Los resultados experimentales muestran que, en comparación con los métodos de identificación existentes, la precisión de la identificación litológica en el registro de yacimientos de baja permeabilidad aumenta significativamente después de la aplicación de tecnología de inteligencia artificial, y el proceso de identificación lleva menos tiempo, lo que demuestra plenamente que la aplicación de la tecnología de inteligencia artificial es propicia para mejorar el rendimiento de la identificación litológica.
References
Deng, L. (2018). Artificial intelligence in the rising wave of deep learning: the historical path and future outlook [perspectives]. IEEE Signal Processing Magazine, 35(1), 180-177. DOI: 10.1109/MSP.2017.2762725
Deng, C. X., Pan, H. P., & Luo, M. (2017). Joint inversion of geochemical data and geophysical logs for lithology identification in CCSD Main Hole. Pure and Applied Geophysics, 174(12), 4407-4420. https://doi.org/10.1007/s00024-017-1650-7
Gobashy, M., Abdelazeem, M., Abdrabou, M., & Khalil, M. H. (2020). Estimating model parameters from self-potential anomaly of 2D Inclined sheet using whale optimization algorithm: applications to mineral exploration and tracing shear zones. Natural Resources Research, 29 (1), 499-519. https://doi.org/10.1007/s11053-019-09526-0
Grzonka, D., Jakóbik, A., Koodziej, J., & Pllana, S. (2018). Using a multi-agent system and artificial intelligence for monitoring and improving the cloud performance and security. Future generation computer systems, 86(SEP.), 1106-1117. DOI:10.1016/j.future.2017.05.046
Guzman, A., & Aoyama, A. (2018). Pipeline risk assessment using artificial intelligence: a case from the Colombian oil network. Process Safety Progress, 37(1), 110-116. DOI:10.1002/prs.11890
Han, F. L., Zhang, H. B., Guo, Q., & Rui, J. (2019). Lithological identification with probabilistic distribution by the modified compositional Kriging. Arabian Journal of Geosciences, 12(18), 1-14. DOI:10.1007/s12517-019-4775-4.
Jia, H., & Deng, L. H. (2018). Water flooding flowing area identification for oil reservoirs based on the method of streamline clustering artificial intelligence. Petroleum Exploration and Development, 45(02), 328-335. https://doi.org/10.1016/S1876-3804(18)30036-3
Jia, J. W., Fu, H. B., & Wang, H. D. (2018). Lithology identification methods based on laser-induced breakdown spectroscopy technology. Chinese Journal of Quantum Electronics, 35(03), 264-270.
Jiang, K., Wang, S. D., & Hu, Y. J. (2018). Lithology identification model by well logging based on boosting tree algorithm. Well Logging Technology, 42(04), 395-400.
Wang, W. Y., & Siau, K. (2019). Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: a review and research agenda. Journal of Database Management, 30(1), 61-79. DOI:10.4018/JDM.2019010104
Wei, J. L., Liu, X. N., Ding, C., Liu, M., Jin, M., & Li, D. (2017). Developing a thermal characteristic index for lithology identification using thermal infrared remote sensing data. Advances in space research, 59(1), 74-87. https://doi.org/10.1016/j.asr.2016.09.005
Xie, Y. X., Zhu, C. Y., Zhou, W., Li, Z., Liu, X., & Tu, M. (2018). Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances. Journal of Petroleum Science and Engineering, 16(03), 182-193. https://doi.org/10.1016/j.petrol.2017.10.028
Zhang, L., Liang, Y. C., & Niyato, D. (2019). 6g visions: mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Communications, 16(8), 1-14. DOI: 10.23919/JCC.2019.08.001
Zhou, Y., Zhang G. Z., Gao G., Zhao, W., Yi, Y., & Wei, H. (2019). Application of kernel principal component analysis in lithologic identification of well logging turbidite. Oil Geophysical Prospecting, 54(03), 667-675, 490.
Zibret, G. (2019). Influences of coal mines, metallurgical plants, urbanization and lithology on the elemental composition of street dust. Environmental Geochemistry and Health, 41(3), 1489-1505. DOI: 10.1007/s10653-018-0228-3
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Rupshikha Patowary, Arundhuti Devi, Ashis K. Mukherjee. (2023). Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. Environmental Science and Pollution Research, 30(30), p.74459. https://doi.org/10.1007/s11356-023-27698-4.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Earth Sciences Research Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.