Published
Mineralogy and geochemical signatures as indicators of differential weathering in natural soil profiles from the West Asturian-Leonese Zone (NW Iberia)
Mineralogía y firmas geoquímicas como indicadores de meteorización diferencial en perfiles de suelos naturales de la Zona Asturoccidental Leonesa (NW de Iberia)
DOI:
https://doi.org/10.15446/esrj.v26n1.81087Keywords:
lithosequence, geochemical domains, differential weathering, Plagioclase Index of Alteration, kaolinization (en)litosecuencia, dominios geoquímicos, alteración diferencial, indice de alteración de plagioclasas, kaolinización (es)
Downloads
This paper presents detailed mineralogical results together with a geochemical characterization for a sequence of six natural soil profiles. Bedrock samples (R series) and overlying soil samples (S series) were characterized. The soil profiles are distributed in a series of Paleozoic lithological units from lower Ordovician to upper Carboniferous in age (Iberian Massif, NW Iberia). The lithological influence on mineral properties and geochemical composition and, how different weathering may be occurring under very similar temperate and acidic conditions, have been studied. Field observations together with laboratory analyses were indicative of differential weathering. So, a series of selected chemical indices and relations were applied to clarify this assumption. The mineralogy was analysed by Scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD) of rock powder and soil oriented aggregates. X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectroscopy (ICP-MS) were applied to analyse chemical composition. The first results showed how major elements, SiO2, Al2O3 and Fe2O3, slightly enriched in the soil profiles, are consistent with the dominant mineralogy: quartz, chlorite, muscovite and/or illite, together with kaolinite and albite. The bases K2O, Na2O, CaO and MgO are also coherent with mineral composition and experience little variation, but are gradually removed in the profiles. The mobility of major elements leads to a general loss of bases and, in general, a slight enrichment in silica and sesquioxides. SiO2 is enriched, firstly accumulated in soils and partially depleted by dissolution as colloidal form. Al2O3 in some soils is slightly less than in former rocks, so other physical processes are expected to take place, involving clay removal with consequent aluminium depletion too. A special emphasis has been given to albite coexisting with kaolinite, firstly supposed to be directly inherited from parent substrates when present, but finally the chemical index PIA shows it was mainly due to mineral alteration of plagioclases. The best correlations to explain the albite alteration and kaolinitization progress were obtained with chemical indices PIA, CIW, CIA and Al2O3/Na2O ratio. This together with mineralogical signatures, suggest that kaolinite is the result of gradual dissolution due to the acid hydrolysis of albite in such acidic environments, which may also be attributed to the organic matter influence.
Este trabajo presenta resultados mineralógicos detallados junto con una caracterización geoquímica para una secuencia de seis perfiles de suelos naturales. Se caracterizaron muestras de rocas (serie R) y muestras de suelos suprayacentes (serie S). Los perfiles de suelo se distribuyen en una serie de unidades litológicas paleozoicas de edad desde el Ordovícico inferior hasta el Carbonífero superior (Macizo Ibérico, NW de Iberia). Se ha estudiado la influencia litológica en las propiedades mineralógicas y en la composición geoquímica y cómo puede ocurrir una alteración diferente en los perfiles bajo condiciones templadas y ácidas muy similares. Las observaciones de campo junto con los análisis de laboratorio fueron indicativos de alteración diferencial. Por lo tanto, se aplicaron una serie de índices químicos de meteorización y algunas relaciones seleccionadas para aclarar esta suposición. La mineralogía se analizó mediante microscopía electrónica de barrido (SEM-EDS), difracción de rayos X (XRD) de muestras de polvo de roca y agregados orientados del suelo. Se aplicaron espectrometría de fluorescencia de rayos X (XRF) y espectroscopia de masas de plasma acoplado inductivamente (ICP-MS) para analizar la composición química. Los primeros resultados mostraron cómo los elementos mayoritarios, SiO2, Al2O3 y Fe2O3, ligeramente enriquecidos en los perfiles de suelo, son consistentes con la mineralogía dominante: cuarzo, clorita, moscovita y/o ilita, junto con caolinita y albita. Las bases K2O, Na2O, CaO y MgO también son coherentes con la composición mineral y experimentan poca variación, pero se eliminan gradualmente en los perfiles. La movilidad de los elementos mayoritarios lleva a una pérdida general de bases y, en general, un ligero enriquecimiento en sílice y sesquióxidos. El SiO2, primero se acumula en los suelos y se pierde parcialmente por disolución en forma coloidal. El Al2O3, en algunos suelos es ligeramente menor que en las rocas, por lo que se espera que parte se pierda también en forma coloidal o tengan lugar otros procesos físicos que involucran la remoción de la arcilla, con la consiguiente pérdida del aluminio también. Se ha dado un énfasis especial a la presencia de albita que coexiste con la caolinita; en primer lugar, se supone que se heredó directamente de los materiales originales en los que está presente, pero finalmente el índice PIA muestra que se debe principalmente a la alteración de las plagioclasas. Las mejores correlaciones para explicar esta alteración de la albita y el progreso de la caolinita, se obtuvieron con los índices químicos PIA, CIW, CIA y la relación Al2O3/Na2O, que junto con firmas mineralógicas, sugieren que la caolinita es el resultado de la disolución gradual debido a la hidrólisis ácida de la albita en dichos ambientes ácidos, que también puede ser atribuido a la influencia de la materia orgánica.
References
Anderson, D. H. & Hawkes, H. E. (1958). Relative mobility of the common elements in weathering of some schist and granite areas. Geochimica et Cosmochimica Acta, 14(3), 204-210. https://doi.org/10.1016/0016-7037(58)90079-6 DOI: https://doi.org/10.1016/0016-7037(58)90079-6
Anderson, S. P., Dietrich, W. E. & Brimhall Jr, G. H. (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin, 114(9), 1143-1158. https://doi.org/10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2
Aspandiar, M. F. & Eggleton, R. A. (2002). Weathering of chlorite: I. Reactions and products in microsystems controlled by the primary mineral. Clays and Clay Minerals, 50(6), 685-698. https://doi.org/10.1346/000986002762090227 DOI: https://doi.org/10.1346/000986002762090227
Bain, D. C., Mellor, A. & Wilson, M. J. (1990). Nature and origin of an aluminous vermiculitic weathering product in acid soils from upland catchments in Scotland. Clay Minerals, 25(4), 467-475. https://doi.org/10.1180/claymin.1990.025.4.05 DOI: https://doi.org/10.1180/claymin.1990.025.4.05
Bain, D.C. (2007). Soil clay minerals and their relevance to environmental change. Macla, 7, 57-59.
Banfield, J. F. & Eggleton, R. A. (1990). Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays and Clay Minerals, 38(1), 77-89. https://doi.org/10.1346/CCMN.1990.0380111 DOI: https://doi.org/10.1346/CCMN.1990.0380111
Barba, P., Nozal, F., Rodríguez, A. S. & Suárez, A. (1994). II: Estratigrafía. In: ITGE (editor). Mapa Geológico de la Provincia de León a escala 1:200000. Instituto Tecnológico Geominero de España, Diputación de León, 13-90.
Chesworth, W. (1973a). The parent rock effect in the genesis of soil. Geoderma, 10 (3), 215-225. https://doi.org/10.1016/0016-7061(73)90064-5 DOI: https://doi.org/10.1016/0016-7061(73)90064-5
Chesworth, W. (1973b). The residua system of chemical weathering: a model for the chemical breakdown of silicate rocks at the surface of the earth. Journal of Soil Science, 24 (1), 69-81. https://doi.org/10.1111/j.1365-2389.1973.tb00742.x DOI: https://doi.org/10.1111/j.1365-2389.1973.tb00742.x
Churchman, G. J. & Lowe, D. J. (2012). Alteration, formation, and occurrence of minerals in soils. In: Huang, P. M.; Li, Y. & Sumner, M. E. (Editors). Handbook of Soil Sciences. 2nd edition. Vol. 1: Properties and Processes. CRC Press (Taylor& Francis), Boca Raton, FL, 20, 1-20. 72 pp. https://hdl.handle.net/10289/9024
Colmenero, J. R., Fernández, L. P., Moreno, C., Bahamonde, J. R., Barba, P., Heredia, N., et al. (2002). Carboniferous. In: Gibbons, W. & Moreno, T. (Editors). Geology of Spain. London, The Geological Society of London, 120–153. DOI: https://doi.org/10.1144/GOSPP.7
Cronan, C. S. (1985). Chemical weathering and solution chemistry in acid forest soils: differential influence of soil type, biotic processes, and H+ deposition. In: The chemistry of weathering. Springer, Dordrecht, 175-195. https://doi.org/10.1007/978-94-009-5333-8_11 DOI: https://doi.org/10.1007/978-94-009-5333-8_11
Di Figlia, M. G., Bellanca, A., Neri, R. & Stefansson, A. (2007). Chemical weathering of volcanic rocks at the island of Pantelleria, Italy: Information from soil profile and soil solution investigations. Chemical Geology, 246 (1-2), 1-18. https://doi.org/10.1016/j.chemgeo.2007.07.025 DOI: https://doi.org/10.1016/j.chemgeo.2007.07.025
Dinis, P. & Oliveira, Á. (2016). Provenance of Pliocene clay deposits from the Iberian Atlantic Margin and compositional changes during recycling. Sedimentary Geology, 336, 171-182. https://doi.org/10.1016/j.sedgeo.2015.12.011 DOI: https://doi.org/10.1016/j.sedgeo.2015.12.011
Dinis, P. A., Dinis, J. L., Mendes, M. M., Rey, J. & Pais, J. (2016). Geochemistry and mineralogy of the Lower Cretaceous of the Lusitanian Basin (western Portugal): Deciphering palaeoclimates from weathering indices and integrated vegetational data. Comptes Rendus Geoscience, 348(2), 139-149. https://doi.org/10.1016/j.crte.2015.09.003 DOI: https://doi.org/10.1016/j.crte.2015.09.003
Dinis, P., Garzanti, E., Vermeesch, P. & Huvi, J. (2017). Climatic zonation and weathering control on sediment composition (Angola). Chemical Geology, 467, 110–121. https://doi.org/10.1016/j.chemgeo.2017.07.030 DOI: https://doi.org/10.1016/j.chemgeo.2017.07.030
Dinis, P. A., Garzanti, E., Hahn, A., Vermeesch, P. & Cabral-Pinto, M. (2020). Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth-Science Reviews, 201, 103039. https://doi.org/10.1016/j.earscirev.2019.103039 DOI: https://doi.org/10.1016/j.earscirev.2019.103039
Doval, M., Martín-García, R., La Iglesia, Á. & Alonso-Zarza, A. M. (2012). Clay minerals associations in palaeoweathering profiles from Central Spain: genesis and implications. Clay Minerals, 47(1), 117-129. https://doi.org/10.1180/claymin.2012.047.1.117 DOI: https://doi.org/10.1180/claymin.2012.047.1.117
Driese, S. G., Medaris Jr, L. G., Ren, M., Runkel, A. C. & Langford, R. P. (2007). Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. The Journal of Geology, 115(4), 387-406. https://doi.org/10.1086/518048 DOI: https://doi.org/10.1086/518048
Eberl, D. D., Farmer, V. C. & Barrer, R. M. (1984). Clay mineral formation and transformation in rocks and soils. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 311 (1517), 241-257. https://doi.org/10.1098/rsta.1984.0026 DOI: https://doi.org/10.1098/rsta.1984.0026
Emberson, R., Hovius, N., Galy, A. & Marc, O. (2016). Oxidation of sulfides and rapid weathering in recent landslides. Earth Surface Dynamics, 4(3), 727-742. https://doi.org/10.5194/esurf-4-727-2016 DOI: https://doi.org/10.5194/esurf-4-727-2016
Ezzaım, A., Turpault, M. P. & Ranger, J. (1999a). Quantification of weathering processes in an acid brown soil developed from tuff (Beaujolais, France): Part I. Formation of weathered rind. Geoderma, 87(3-4), 137-154. https://doi.org/10.1016/S0016-7061(98)00061-5 DOI: https://doi.org/10.1016/S0016-7061(98)00060-3
Ezzaım, A., Turpault, M. P. & Ranger, J. (1999b). Quantification of weathering processes in an acid brown soil developed from tuff (Beaujolais, France): Part II. Soil formation. Geoderma, 87 (3-4), 155-177. https://doi.org/10.1016/S0016-7061(98)00061-5 DOI: https://doi.org/10.1016/S0016-7061(98)00061-5
Fedo, C. M., Wayne Nesbitt, H. & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
Fernández-Caliani, J. C. & Cantano, M. (2010). Intensive kaolinization during a lateritic weathering event in South-West Spain: mineralogical and geochemical inferences from a relict paleosol. Catena, 80 (1), 23-33. https://doi.org/10.1016/j.catena.2009.08.005 DOI: https://doi.org/10.1016/j.catena.2009.08.005
Fischer, C., Schmidt, C., Bauer, A., Gaupp, R. & Heide, K. (2009). Mineralogical and geochemical alteration of low-grade metamorphic black slates due to oxidative weathering. Geochemistry, 69 (2), 127-142. https://doi.org/10.1016/j.chemer.2009.02.002 DOI: https://doi.org/10.1016/j.chemer.2009.02.002
Gallardo Lancho, J., Camazano, M.S., Alonso, J. S. & Sánchez, Y. G. (1976). Influencia de la materia orgánica en la génesis de gibsita y caolinita en suelos graníticos del centro-oeste de España. Clay Minerals, 11(3), 241-249. https://doi.org/10.1180/claymin.1976.011.3.06 DOI: https://doi.org/10.1180/claymin.1976.011.3.06
Gardner, R. & Walsh, N. (1996). Chemical weathering of metamorphic rocks from low elevations in the southern Himalaya. Chemical Geology, 127(1-3), 161-176. https://doi.org/10.1016/0009-2541(95)00089-5 DOI: https://doi.org/10.1016/0009-2541(95)00089-5
Guan, P., Ng, C. W. W., Sun, M. & Tang, W. (2001). Weathering indices for rhyolitic tuff and granite in Hong Kong. Engineering Geology, 59(1-2), 147-159. https://doi.org/10.1016/S0013-7952(00)00071-5 DOI: https://doi.org/10.1016/S0013-7952(00)00071-5
Harnois, L. (1988). The CIW index: a new chemical index of weathering. Sedimentary geology, 55, 319-322. https://doi.org/10.1016/0037-0738(88)90137-6 DOI: https://doi.org/10.1016/0037-0738(88)90137-6
Harriss, R. C. & Adams, J. A. (1966). Geochemical and mineralogical studies on the weathering of granitic rocks. American Journal of Science, 264(2), 146-173. https://doi.org/10.2475/ajs.264.2.146 DOI: https://doi.org/10.2475/ajs.264.2.146
Hernando Massanet, M. I., Barba Carretero, A. M. & Hernando Costa, J. (2004). Mineralogía de suelos de la Sierra de Guadarrama (Madrid, España). Cuaternario y Geomorfología, 18(1-2), 67-71.
Jayawardena, U. D. S. & Izawa, E. (1994). A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka. Engineering Geology, 36(3-4), 303-310. https://doi.org/10.1016/0013-7952(94)90011-6 DOI: https://doi.org/10.1016/0013-7952(94)90011-6
Jiménez-Espinosa, R., Vázquez, M. & Jiménez-Millán, J. (2007). Differential weathering of granitic stocks and landscape effects in a Mediterranean climate, Southern Iberian Massif (Spain). Catena, 70(2), 243-252. https://doi.org/10.1016/j.catena.2006.09.001 DOI: https://doi.org/10.1016/j.catena.2006.09.001
Johnson, N. M., Likens, G. E., Bormann, F. H. & Pierce, R. S. (1968). Rate of chemical weathering of silicate minerals in New Hampshire. Geochimica et Cosmochimica Acta, 32(5), 531-545. https://doi.org/10.1016/0016-7037(68)90044-6 DOI: https://doi.org/10.1016/0016-7037(68)90044-6
Klug, H. P. & Alexander, L. E. (1974). X-ray diffraction procedures: for polycrystalline and amorphous materials. Second edition, Wiley-VCH, U.S.A., 992 pp.
Li, S. L., Chetelat, B., Yue, F., Zhao, Z. & Liu, C. Q. (2014). Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88, 74-84. https://doi.org/10.1016/j.jseaes.2014.03.011 DOI: https://doi.org/10.1016/j.jseaes.2014.03.011
Ling, S., Wu, X., Sun, C., Liao, X., Ren, Y. & Li, X. (2016). Mineralogy and geochemistry of three weathered Lower Cambrian black shale profiles in Northeast Chongqing, China. Geosciences Journal, 20 (6), 793-812. https://doi.org/10.1007/s12303-016-0008-y DOI: https://doi.org/10.1007/s12303-016-0008-y
Ling, S., Wu, X., Zhao, S. & Liao, X. (2018). Evolution of porosity and clay mineralogy associated with chemical weathering of black shale: a case study of Lower Cambrian black shale in Chongqing, China. Journal of Geochemical Exploration, 188, 326-339. https://doi.org/10.1016/j.gexplo.2018.02.002 DOI: https://doi.org/10.1016/j.gexplo.2018.02.002
Marcos, A., Martínez-Catalán, J. R., Pérez-Estaún, A., Pulgar, J. A. & Vera, J. A. (2004). Características generales de la estructura de la Zona Asturoccidental-leonesa. In: Vera, J. A. (Ed). Geología de España, SGE-IGME, Madrid, 54-55 pp.
Martínez-Catalán, J. R., Pérez-Estaún, A., Bastida, F., Pulgar, J. A. & Marcos, A. (1990) West Asturian-Leonese Zone. Structure. In: Dallmeyer, E. & Martínez-García (Eds.). Pre-Mesozoic Geology of Iberia, R.D., Springer-Verlag, Berlin, 103-114 pp. DOI: https://doi.org/10.1007/978-3-642-83980-1_9
Merriman, R. J., Roberts, B. & Peacor, D. R. (1990). A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contributions to Mineralogy and Petrology, 106(1), 27-40. https://doi.org/10.1007/BF00306406 DOI: https://doi.org/10.1007/BF00306406
Meunier, A., Sardini, P., Robinet, J. C. & Prêt, D. (2007). The petrography of weathering processes: facts and outlooks. Clay Minerals, 42(4), 415-435. https://doi.org/10.1180/claymin.2007.042.4.01 DOI: https://doi.org/10.1180/claymin.2007.042.4.01
Meunier, A., Caner, L., Hubert, F., El Albani, A. & Prêt, D. (2013). The weathering intensity scale (WIS): An alternative approach of the chemical index of alteration (CIA). American Journal of Science, 313(2), 113-143. https://doi.org/10.2475/02.2013.03 DOI: https://doi.org/10.2475/02.2013.03
Molina, E., Cantano, M., Rodriguez, P. G. & Vicente, M. A. (1990). Some aspects of paleoweathering in the Iberian Hercynian Massif. Catena, 17(4-5), 333-346. https://doi.org/10.1016/0341-8162(90)90036-D DOI: https://doi.org/10.1016/0341-8162(90)90036-D
Molina, E., González, M. G. & Espejo, R. (1991). Study of paleoweathering on the Spanish Hercynian basement Montes de Toledo (central Spain). Catena, 18(3-4), 345-354. https://doi.org/10.1016/0341-8162(91)90030-2 DOI: https://doi.org/10.1016/0341-8162(91)90030-2
Molina, E. & Cantano M. (2002). Study of weathering processes developed on old piedmont surfaces in Western Spain: new contributions to the interpretation of the ‘‘Raña’’ profiles. Geomorphology, 42(3-4), 279-292. https://doi.org/10.1016/S0169-555X(01)00091-5 DOI: https://doi.org/10.1016/S0169-555X(01)00091-5
Moore, D. M. & Reynolds, R. C. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals (Vol. 322). Oxford: Oxford University press, 321 pp.
Munroe, J. S., Farrugia, G. & Ryan, P. C. (2007). Parent material and chemical weathering in alpine soils on Mt. Mansfield, Vermont, USA. Catena, 70(1), 39-48. https://doi.org/10.1016/j.catena.2006.07.003 DOI: https://doi.org/10.1016/j.catena.2006.07.003
Nesbitt, H. W., Markovics, G. & Price R. C. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11), 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5 DOI: https://doi.org/10.1016/0016-7037(80)90218-5
Nesbitt, H. W. & Young, G. M. (1982). Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2), 129-147. https://doi.org/10.1086/629290 DOI: https://doi.org/10.1086/629290
Núñez, M. A. & Recio, J. M. (2007). Kaolinitic paleosols in the southwest of the Iberian Peninsula (Sierra Morena region, Spain). Paleoenvironmental implications. Catena, 70(3), 388-395. https://doi.org/10.1016/j.catena.2006.11.004 DOI: https://doi.org/10.1016/j.catena.2006.11.004
Papoulis, D., Tsolis-Katagas, P. & Katagas, C. (2004). Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays and Clay Minerals, 52(3), 275-286. https://doi.org/10.1346/CCMN.2004.0520303 DOI: https://doi.org/10.1346/CCMN.2004.0520303
Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 107, 501–504. https://doi.org/10.1017/S0016756800058581 DOI: https://doi.org/10.1017/S0016756800058581
Pédro, G. (1997). Clay minerals in weathered rock materials and in soils. In: Soils and sediments. Springer, Berlin, Heidelberg, 1-18pp. https://doi.org/10.1007/978-3-642-60525-3_1 DOI: https://doi.org/10.1007/978-3-642-60525-3_1
Pérez-Estaún, A., Bastida, F., Martínez-Catalán, J. R., Gutiérrez Marco, J. C., Marcos, A. & Pulgar, J. A. (1990). The West Asturian-Leonese zone. Stratigraphy. In: Dallmeyer, R. D. & Martínez-García, E. (Editors). Pre-Mesozoic Geology of Iberia, Springer-Verlag, Berlin, 92-102. https://doi.org/10.1007/978-3-642-83980-1_3 DOI: https://doi.org/10.1007/978-3-642-83980-1_8
Pérez-Estaún, A., Bea, F., Bastida, F., Marcos, A., Martínez-Catalán, J. R., Arenas, R., Díaz García, F., Azor, A., Simancas, J. F. & González Lodeiro, F. (2004). La Cordillera Varisca Europea: El Macizo Ibérico. In: Vera, J. A. (Editor). Geología de España, SGE-IGME, Madrid, 17-25.
Perri, F. (2018). Reconstructing chemical weathering during the Lower Mesozoic in the Western-Central Mediterranean area: a review of geochemical proxies. Geological Magazine, 155(4), 944-954. https://doi.org/10.1017/S0016756816001205 DOI: https://doi.org/10.1017/S0016756816001205
Perri, F. (2020). Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical proxies: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 556, 109873. https://doi.org/10.1016/j.palaeo.2020.109873 DOI: https://doi.org/10.1016/j.palaeo.2020.109873
Perri, F., Scarciglia, F., Apollaro, C. & Marini, L. (2015). Characterization of granitoid profiles in the Sila Massif (Calabria, southern Italy) and reconstruction of weathering processes by mineralogy, chemistry, and reaction path modeling. Journal of Soils and Sediments, 15(6), 1351-1372. https://doi.org/10.1007/s11368-014-0856-x DOI: https://doi.org/10.1007/s11368-014-0856-x
Price, J. R. & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical geology, 202(3-4), 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001 DOI: https://doi.org/10.1016/j.chemgeo.2002.11.001
Reynolds, R. C. (1980). Interstratified clay minerals. In: Brindley, G. W. and Brown, G. (Editors). Crystal Structures of Clay Minerals and their X-ray Identification, Monograph 5, Mineralogical Society, London, 49–303 pp. https://doi.org/10.1180/mono-5.4 DOI: https://doi.org/10.1180/mono-5.4
Robert, M. & Tessier, D. (1992). Incipient weathering: some new concepts on weathering, clay formation and organization. In: Martini, V. & Chesworth, W. (Editors). Developments in Earth Surface Processes (Vol. 2). Elsevier, 71-105 pp. https://doi.org/10.1016/B978-0-444-89198-3.50009-X DOI: https://doi.org/10.1016/B978-0-444-89198-3.50009-X
Robertson, I. D. & Eggleton, R. A. (1991). Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite. Clays and Clay Minerals, 39(2), 113-126. https://doi.org/10.1346/CCMN.1991.0390201 DOI: https://doi.org/10.1346/CCMN.1991.0390201
Rodríguez Fernández, L. R. (1982). Mapa Geológico Nacional (MAGNA), serie 2ª, primera edición, Eccala 1:50.000 hoja nº127 (Noceda). Instituto Geológico y Minero de España (IGME), Madrid.
Romero, R., Robert, M., Elsass, F. & García, C. (1992). Abundance of halloysite neoformation in soils developed from crystalline rocks. Contribution of transmission electron microscopy. Clay Minerals, 27(1), 35-46. https://doi.org/10.1180/claymin.1992.027.1.04 DOI: https://doi.org/10.1180/claymin.1992.027.1.04
Ruxton, B. P. (1968). Measures of the degree of chemical weathering of rocks. The Journal of Geology, 76(5), 518-527. https://doi.org/10.1086/627357 DOI: https://doi.org/10.1086/627357
Scarciglia, F., Critelli, S., Borrelli, L., Coniglio, S., Muto, F. & Perri, F. (2016). Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: New insights into their formation processes and rates. Sedimentary geology, 336, 46-67. https://doi.org/10.1016/j.sedgeo.2016.01.015 DOI: https://doi.org/10.1016/j.sedgeo.2016.01.015
Senol, H., Tunçay, T. & Dengiz, O. (2016). Geochemical mass-balance, weathering and evolution of soils formed on a Quaternary-age basaltic toposequences. Solid Earth Discuss (preprint), 105, 1-22. https://doi.org/10.5194/se-2016-105 DOI: https://doi.org/10.5194/se-2016-105
Spears, D. (2016). Clay mineralogy of onshore UK Carboniferous mudrocks. Clay Minerals, 41(1), 395-416. https://doi.org/10.1180/0009855064110201 DOI: https://doi.org/10.1180/0009855064110201
Suárez, O., Corretgé, L. G. & Martínez, F. J. (1990). The West Asturian-Leonese Zone. Distribution and characteristics of the Hercynian metamorphism. In: Dallmeyer, R. D. & Martínez-García, E. (Editors). Pre-Mesozoic Geology of Iberia, Springer-Verlag, Berlín, 129-133. DOI: https://doi.org/10.1007/978-3-642-83980-1_11
Taboada, T. & Garcia, C. (1999). Pseudomorphic transformation of plagioclases during the weathering of granitic rocks in Galicia (NW Spain). Catena, 35 (2-4), 291-302. https://doi.org/10.1016/S0341-8162(98)00108-8 DOI: https://doi.org/10.1016/S0341-8162(98)00108-8
Tardy, Y., Bocquier, G., Paquet, H. & Millot, G. (1973). Formation of clay from granite and its distribution in relation to climate and topography. Geoderma, 10, 271–284. https://doi.org/10.1016/0016-7061(73)90002-5 DOI: https://doi.org/10.1016/0016-7061(73)90002-5
Vicente, M. A., Molina, E. & Espejo, R. (1991). Clays in paleoweathering processes: study of a typical weathering profile in the Hercynian basement in the Montes de Toledo (Spain). Clay Minerals, 26(1), 81-90. https://doi.org/10.1180/claymin.1991.026.1.08 DOI: https://doi.org/10.1180/claymin.1991.026.1.08
Vicente, M. A., Elsass, F., Molina, E. & Robert, M. (1997). Palaeoweathering in slates from the Iberian Hercynian Massif (Spain): investigation by TEM of clay mineral signatures. Clay Minerals, 32(3), 435-451. https://doi.org/10.1180/claymin.1997.032.3.06 DOI: https://doi.org/10.1180/claymin.1997.032.3.06
Wagner, R. H. (2004). The Iberian Massif: a Carboniferous assembly. Journal of Iberian Geology, 30, 93–108.
White, A. F. & Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chemical Geology, 202(3-4), 479-506. https://doi.org/10.1016/j.chemgeo.2003.03.001 DOI: https://doi.org/10.1016/j.chemgeo.2003.03.001
White, A. F. & Buss, H. L. (2014). Natural weathering rates of silicate minerals. Treatise on geochemistry, Second Edition. Elsevier, Oxford, 115-155. DOI: https://doi.org/10.1016/B978-0-08-095975-7.00504-0
White, A. F., Bullen, T. D., Schulz, M. S., Blum, A. E., Huntington, T. G. & Peters, N. E. (2001). Differential rates of feldspar weathering in granitic regoliths. Geochimica et Cosmochimica Acta, 65(6), 847-869. https://doi.org/10.1016/S0016-7037(00)00577-9 DOI: https://doi.org/10.1016/S0016-7037(00)00577-9
Wilson, M. J. (2004). Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39(3), 233-266. https://doi.org/10.1180/0009855043930133 DOI: https://doi.org/10.1180/0009855043930133
Young, G. M. & Nesbitt, H. W. (1998). Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary research, 68(3), 448-455. https://doi.org/10.2110/jsr.68.448 DOI: https://doi.org/10.2110/jsr.68.448
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2022 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.