Published
A prediction method of regional water resources carrying capacity based on artificial neural network
Un método de predicción de la capacidad de carga de los recursos hídricos regionales basado en una red neuronal artificial
DOI:
https://doi.org/10.15446/esrj.v25n2.81615Keywords:
Artificial neural network, BP neural network, Regional water resources, Water resources carrying capacity, Carrying capacity prediction (en)Red neuronal artificial, Red neuronal BP, Recursos hídricos regionales, Capacidad de carga de recursos hídricos, Predicción de la capacidad de carga (es)
Downloads
To better predict the water resources carrying capacity and guide the social and economic activities, a prediction method of regional water resources carrying capacity is proposed based on an artificial neural network. Zhaozhou County is selected as the research area of water resources carrying capacity prediction, and its natural geographical characteristics, social economy, and water resources situation are explored. According to the regional water resources quantity and utilization characteristics and evaluation emphasis, the evaluation index system of water resources carrying capacity is constructed to evaluate the importance and correlation of water resource carrying capacity. The pressure degree of water resources carrying capacity is divided into five grades. According to the evaluation standard of bearing capacity, the artificial intelligence BP neural network model is constructed. Based on the main impact factors of water resources carrying capacity in this area, the water resources carrying capacity grade is obtained by weight calculation and convergence iteration by using neural network model and influence factor data to realize the prediction of water resources carrying capacity. The research results show that the network model can meet the demand for precision. The prediction results have a high degree of fit with the actual data, indicating that human intelligence can obtain accurate prediction results in water resources carrying capacity prediction.
Para predecir la capacidad de carga de los recursos hídricos con mayor precisión y orientar mejor las actividades sociales y económicas, se propone un método de predicción de la capacidad de carga de los recursos hídricos regionales basado en una red neuronal artificial. El condado de Zhaozhou se selecciona como el área de investigación de la predicción de la capacidad de carga de los recursos hídricos, y se exploran sus características geográficas naturales, la economía social y la situación de los recursos hídricos. De acuerdo con las características regionales de cantidad y utilización de los recursos hídricos y el énfasis de la evaluación, el sistema de índice de evaluación de la capacidad de carga de los recursos hídricos se construye para evaluar la importancia y el grado de correlación de la capacidad de carga de los recursos hídricos, y el grado de presión de la capacidad de carga de los recursos hídricos se divide en cinco grados. De acuerdo con el estándar de evaluación de la capacidad de carga, se construye el modelo de red neuronal BP de inteligencia artificial. Con base en los principales factores de impacto de la capacidad de carga de los recursos hídricos en esta área, el grado de capacidad de carga de los recursos hídricos se obtiene mediante el cálculo del peso y la iteración de convergencia utilizando el modelo de red neuronal y los datos de factores de influencia, para realizar la predicción de la capacidad de carga de los recursos hídricos. Los resultados de la investigación muestran que el modelo de red puede satisfacer la demanda de precisión y los resultados de la predicción tienen un alto grado de ajuste con los datos reales, lo que indica que la inteligencia humana puede obtener resultados de predicción precisos en el proceso de predicción de la capacidad de carga de los recursos hídricos.
References
Cheng, K., Fu, Q., Meng, J., Li, T. X., & Pei, W. (2018). Analysis of the spatial variation and identification of factors affecting the water resources carrying capacity based on the cloud model. Water Resources Management, European Water Resources Association (EWRA), 32(8), 1-15. https://doi.org/10.1007/s11269-018-1957-x
Chenini, I., Msaddek, M. H., & Dlala, M. (2019). Hydrogeological characterization and aquifer recharge mapping for groundwater resources management using multicriteria analysis and numerical modeling: A case study from Tunisia. Journal of African Earth Sciences, 154(6), 59-69. https://doi.org/10.1016/j.jafrearsci.2019.02.031
Dos Santos, F. F., Pimenta, P. F., Lunardi, C., Draghetti, L., Carro, L., Kaeli, & D., Rech, P. (2019). Analyzing and increasing the reliability of convolutional neural networks on GPUs. IEEE Transactions on Reliability, 68(2), 663-677. DOI: 10.1109/TR.2018.2878387
Guo, L. (2020). Design of prediction system for sustainable carrying capacity of regional water resources based on big data. Modern Electronic Technology, 043(009), 117-121.
Hu, M. J., Li, Z. J., Ding, Z. S., Zhou, N., & Shen, Y. (2019). The spatio-temporal heterogeneity and driving mechanism of China's water transfer from agriculture to non-agriculture. Geographical Research, 38(06), 1542-1554. DOI: 10.11821/dlyj020171262
Jia, J. H., & Long, X. J. (2018). Research on prediction model of water resources carrying capacity. Water Resources and Hydropower Engineering, 49(10), 24-30.
Jiang, Y. T., & Li, P. (2018). Short-term load forecasting based on improved particle swarm neural network. Electrical Engineering, 19(02), 87-91. DOI: 10.1109/CEECT50755.2020.9298636
Kamimura, R. (2018). Neural self-compressor: Collective interpretation by compressing multi-layered neural networks into non-layered networks. Neurocomputing, 323(1), 12-36. https://doi.org/10.1016/j.neucom.2018.09.036
Li, S. H., & Wang, L. (2018). Neural network renormalization group. Physical review letters, 121(26), 260601.1-260601.7. DOI: 10.1103/PhysRevLett.121.260601
Liu, Z. M., Zhou, Z. Z., & Wang, Y. Q. (2019). Forecast and analysis of regional water resources carrying capacity based on grey prediction model. Journal of Yangtze River Scientific Research Institute, 36(9), 34-39.
Li, W. K., Wang, W. L., & Li, L. (2018). Optimization of water resources utilization by multi-objective moth-flame algorithm. Water Resources Management, 32(10), 3303-3316. https://doi.org/10.1007/s11269-018-1992-7
Menhas, R., Mahmood, S., Tanchangya, P., & Safdar, M. N. (2019). Sustainable development under belt and road initiative: A case study of China-Pakistan economic corridor's socio-economic impact on Pakistan. Sustainability, 11(21), 1-24.
Par, S. S., & Kar, S. (2019). A hybridized forecasting method based on weight adjustment of neural network using generalized type-2 fuzzy set. International Journal of Fuzzy Systems, 21(1), 308-320. https://doi.org/10.1007/s40815-018-0534-z
Pelusi, D., Mascella, R., Tallini L., Nayak, J., Naik, B., & Abraham, A. (2018). Neural network and fuzzy system for the tuning of gravitational search algorithm parameters. Expert Systems with Applications, 102(7), 234-244. https://doi.org/10.1016/j.eswa.2018.02.026
Todo, Y., Tang, Z., Todo, H., Ji, J., & Yamashita, K. (2019). Neurons with Multiplicative Interactions of Nonlinear Synapses. International Journal of Neural Systems, 29(08), 115-133. DOI:10.1142/S0129065719500126
Wang, L., Xiong, Y. N., Li, S. W., & Zeng, Y. R. (2019). New fruit fly optimization algorithm with joint search strategies for function optimization problems. Knowledge-Based Systems, 176(7), 77-96. https://doi.org/10.1016/j.knosys.2019.03.028
Wang, L., Zhao, H. Y., & Sha, C. L. (2018). Dynamical stability in a delayed neural network with reaction–diffusion and coupling. Nonlinear Dynamics, 92(3), 1197-1215. https://doi.org/10.1007/s11071-018-4118-0
Wen, S., Xiao, S., Yang, Y., Yan, Z., Zeng, Z., & Huang, T. (2019). Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(6), 1084-1094. DOI: 10.1109/TCAD.2018.2834436
Xu, X., Zhang, Y., & Chen, Y. (2020). Projecting China's future water footprint under the shared socio-economic pathways. Journal of Environmental Management, 260(4), 110102.1-110102.13. DOI:10.1016/j.jenvman.2020.110102
Zhu, L., Li, X., Bai, Y., Yi, T., & Yao, L. (2019). Evaluation of water resources carrying capacity and its obstruction factor analysis: A case study of Hubei province, China. Water, 11(12), 2573.1-2573.14. DOI:10.3390/w11122573
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Luyao Liu, Xue Xu, Jiaru Wu, Scott Jarvie, Fengshi Li, Peng Han, Qing Zhang. (2022). Comprehensive evaluation and scenario simulation of carrying capacity of water resources in Mu Us Sandy Land, China. Water Supply, 22(9), p.7256. https://doi.org/10.2166/ws.2022.304.
2. Shuo Zhu, Yan Liu, Miaochao Chen. (2022). Analysis of Human Resource Allocation Model for Tourism Industry Based on Improved BP Neural Network. Journal of Mathematics, 2022(1) https://doi.org/10.1155/2022/1332829.
3. Xingwang Zhang, Xuechun Duan. (2024). Evaluating water resource carrying capacity in Pearl River-West River economic Belt based on portfolio weights and GRA-TOPSIS-CCDM. Ecological Indicators, 161, p.111942. https://doi.org/10.1016/j.ecolind.2024.111942.
4. Liang He, Liwen Yang, Ling Chen, Yabin Ye, Shuo Zhang, Chenfang Xu. (2024). Comprehensive evaluation and analysis of water resource characteristics in Lixiahe Plain, China. Water Supply, 24(5), p.1658. https://doi.org/10.2166/ws.2024.076.
5. Ying Zhang, Xiaomeng Song, Xiaojun Wang, Zhifeng Jin, Feng Chen. (2023). Multi-Level Fuzzy Comprehensive Evaluation for Water Resources Carrying Capacity in Xuzhou City, China. Sustainability, 15(14), p.11369. https://doi.org/10.3390/su151411369.
6. Yaqing Li, Jing Zhang, Yongyu Song. (2022). Comprehensive comparison and assessment of three models evaluating water resource carrying capacity in Beijing, China. Ecological Indicators, 143, p.109305. https://doi.org/10.1016/j.ecolind.2022.109305.
7. Yuxi Xie, Weihua Zeng, Jie Qiu. (2023). Integrated water risk early warning framework of the semi-arid transitional zone based on the water environmental carrying capacity (WECC). Journal of Arid Land, 15(2), p.145. https://doi.org/10.1007/s40333-022-0083-z.
8. Qiuxiang Jiang, Weipeng Guo, Zilong Wang, Yunxing Wu, Youzhu Zhao, Meiyun Tao, Yuxiang Sun. (2024). Forecasting regional water demand using multi-fidelity data and harris hawks optimization of generalized regression neural network models – A case study of Heilongjiang Province, China. Journal of Hydrology, 634, p.131084. https://doi.org/10.1016/j.jhydrol.2024.131084.
9. Gang He, Shuhang Zhao, Xiaodong Wang. (2024). Evaluation of water resources security in Anhui Province based on GA-BP model. Environmental Science and Pollution Research, 31(20), p.29246. https://doi.org/10.1007/s11356-024-32937-3.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.