Published
GPU Parallelization Nested Decomposition Method for Solving Large Linear Systems in Reservoir Numerical Simulation
Método de descomposición anidada a través de paralelización con Unidades de Procesamiento Gráfico para resolver Sistemas Lineales Grandes en la simulación numérica de yacimientos
DOI:
https://doi.org/10.15446/esrj.v23n3.81669Keywords:
Nested decomposition, GPU parallel, Linear solution, CPR, (en)Descomposición anidada, GPU paralela, solución lineal, CPR. (es)
Downloads
References
Appleyard, J., Appleyard, J., Wakefield, M., & Desitter, A. (2011). Accelerating reservoir simulators using GPU technology. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.
Appleyard, J. (2016). Method and apparatus for estimating the state of a system: U.S. Patent 9, 396, 162. 2016-7-19.
Jiang. Y. (2007). Techniques for modeling complex reservoirs and advanced wells. Stanford University.
Jiang, Y. & Tchelepi, H. (2009). Scalable multistage linear solver for coupled systems of multisegment wells and unstructured reservoir models. SPE 119175, proceedings of the 20th SPE Reservoir Simulation Symposium. The Woodlands, TX.
Kuznetsova, N. N., Diyankov, O. V., Kotegov, S. S., Koshelev, S. V., Krasnogorov, I. V., Pravilnikov, V. Y., & Maliassov, S. (2007). The family of nested factorizations. Russian Journal of Numerical Analysis and Mathematical Modelling, 22(4), 393-412.
NVIDIA. (2012a). CUDA C Best Pratice Guide, Version 5.0.
NVIDIA. (2012b). CUDA C Programming Guide, Version 5.0.
NVIDIA. (2009). Whitepaper-NVIDIA's Next Generation CUDA Compute Architecture. Fermi.
Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3), 856-869.
Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics.
Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation. Computational geometry, 22(1-3): 21-74.
Stüben, K. (1983). Algebraic multigrid (AMG): experiences and comparisons. Applied mathematics and computation, 13(3): 419-451.
Van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13, 631-644.
Wallis, J. R., Kendall, R. P., & Little, T. E. (1985). Constrained residual acceleration of conjugate residual methods. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.
Wallis, J. R. (1983). Incomplete Gaussian elimination as a preconditioning for generalized conjugate gradient acceleration. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.
Zhou, Y. (2012). Parallel general-purpose reservoir simulation with coupled reservoir models and multisegment wells. Stanford University.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2019 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.