Published
Spatial distribution of porphyry copper deposits in Dehaj terrain: Implications for exploration
Investigación de la distribución espacial de depósitos de pórfido cuprífero a través del método de Fry y métodos fractales en el área de Dehaj, Kerman: Implicaciones para la exploración
DOI:
https://doi.org/10.15446/esrj.v26n4.82748Keywords:
Structural controls, Porphyry copper deposits, fry analysis, fractal analysis, distance-distribution analysis, Iran. (en)Controles estructurales; depósitos de pórfido cuprífero; método de Fry; fractal; análisis de distribución de distancias; cinturón de Urmia-Dokhtar; Irán (es)
Downloads
Magmatism is triggered and controlled by tectonic systems, and thus these processes play an irrefutable role in the deposition and emplacement of hydrothermal mineral systems. It is, therefore, paramount to recognize the tectonic processes that are genetically associated with hydrothermal mineral systems. This study seeks to address this caveat by recognizing the main tectonic processes that have controlled the distribution of porphyry copper deposits in Dehaj terrain, Central Iran. For this purpose, the spatial association of 31 known porphyry copper deposits, faults, and fractures were evaluated by fry, fractal, and distance-distribution analyses. The results of fry analysis revealed that mineralization has distributed through three different trends, namely NE, NW, and NS, which shows a clear association with the fault systems presented in the area. Also, the fractal method applied demonstrated that structural controls on mineralization have operated on two different scales, regional and local scales. Distance-Distribution analysis was further used to assess the spatial correlation between known porphyry Cu deposits and fault traces, supplementing the results of fry and fractal analyses by quantitative measurements. The synthesis of the results of these three methods shows that the NW-trending faults have plausibly controlled the magmatism at a regional scale; nevertheless, NE- and N-trending faults have probably operated at local scales controlling the channeling and emplacement of mineral-bearing fluids.
El magmatismo, conocido por ser desencadenado y controlado por sistemas tectónicos, juega un rol importante en la deposición y emplazamiento de sistemas minerales hidrotermales. Es fundamental, entonces, reconocer los procesos tectónicos que están genéticamente asociados con los sistemas minerales hidrotermales. Este trabajo está enfocado en esta falta de datos al establecer los principales procesos tectónicos que han controlado la distribución de depósitos de pórfido cuprífero en el área de Dehaj, en el cinturón magmático de Urmia-Dokhtar, en el centro de Irán. Con este propósito se evaluaron las asociaciones espaciales, las fallas y las fracturas de 31 depósitos conocidos de pórfido cuprífero a través de técnicas numéricas que incluyen el método de Fry (extrapolación), fractal (método de conteo de cajas y de densidad radial), y análisis de distribución de distancia para investigar los controles estructurales de la mineralización del pórfido cuprífero. Los resultados de los análisis de extrapolación revelaron tres tendencias en la mineralización, NS, NE, y NW, lo que claramente coincide con los sistemas de fallas en el área. La aplicación del método fractal demostró que los controles estructurales en la mineralización han operado a escala regional y a escala local. El análisis de distribución de distancias fue usado luego para relacionar los depósitos de pórfido cuprífero con las trazas de las fallas y complementar así los resultados de las medidas cuantitativas del método de Fry y de los análisis fractales. La compilación de los resultados de estos tres métodos muestra que las fallas con tendencia NW problablemente han controlado el magmatismo a escala regional. A escala local, sin embargo, las fallas con tendencia NE y N han controlado la canalización y el emplazamiento de fluidos con minerales.
References
Adib, A., Afzal, P., Mirzaei Ilani, S., & Aliyari, F. (2017a). Determination of the relationship between major fault and zinc mineralization using fractal modeling in the Behabad fault zone, central Iran. Journal of African Earth Sciences, 134, 308-319. https://doi.org/10.1016/j.jafrearsci.2017.06.025 DOI: https://doi.org/10.1016/j.jafrearsci.2017.06.025
Adib, A., Ilani, M. S., Shoaei, G. R. & Afzal, P. (2017b). Determination of a conceptual model for the structural features and Pb-Zn mineralization in the north of the Behabad fault zone, Central Iran. Iranian Journal of Earth Science, b9, 150-165.
Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., & Omran, N. R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 108(3), 220-232. https://doi.org/10.1016/j.gexplo.2011.03.005 DOI: https://doi.org/10.1016/j.gexplo.2011.03.005
Agterberg, F. P. & Bonham-Carter, G. F. (2005). Measuring the performance of mineral potential maps. Journal of Natural Resources Research, 14, 1-17. https://doi.org/10.1007/s11053-005-4674-0 DOI: https://doi.org/10.1007/s11053-005-4674-0
Agterberg, F. P. (2013). Fractals and spatial statistics of point patterns. Journal of Earth Science, 24, 1–11. https://doi.org/10.1007/s12583-013-0305-6 DOI: https://doi.org/10.1007/s12583-013-0305-6
Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), 211-238. https://doi.org/10.1016/0040-1951(94)90030-2 DOI: https://doi.org/10.1016/0040-1951(94)90030-2
Bazin, D. & Hubner, H. (1969). Copper deposits in Iran. Geological survey of Iran, Tehran, 232 pp.
Berman, M. (1977). Distance distributions associated with Poisson processes of geometric figures. Journal of Applied Probability, 14, 195–199. https://doi.org/10.2307/3213273 DOI: https://doi.org/10.2307/3213273
Berman, M. (1986). Testing for spatial association between a point process and another stochastic process. Journal of Applied Statistics, 35, 54-62. https://doi.org/10.2307/2347865 DOI: https://doi.org/10.2307/2347865
Carlson, C. A. (1991). Spatial distribution of ore deposits. Journal of Geology, 19(2), 111-114. https://doi.org/10.1130/0091-7613(1991)019<0111:SDOOD>2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1991)019<0111:SDOOD>2.3.CO;2
Carranza, E. J. M. (2008). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Elsevier B.V, Amsterdam, Netherlands, 351 pp.
Carranza, E. J. M. (2009). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35(3-4), 383-400. https://doi.org/10.1016/j.oregeorev.2009.01.001 DOI: https://doi.org/10.1016/j.oregeorev.2009.01.001
Carranza, E. J. M. & Sadeghi, M. (2014). Post-VMS mineralization deformations (1880–1820 Ma) of the Skellefte district (Sweden): insights from the spatial pattern of VMS occurrences. Journal of Frontiers of Earth Science, 8, 319–324. https://doi.org/10.1007/s11707-014-0466-3 DOI: https://doi.org/10.1007/s11707-014-0466-3
Dehghani, B. (2000). Petrological and geochemical study in Darreh–Zereshk and Turan Posht, Southwestern of Yazd. [Master’s Thesis, Tehran University], Tehran, Iran.
Dimitrijevic, M. D. (1973). Geology of Kerman Region. Geological Survey of Iran, Tehran, Iran.
Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C., & Withjack, M. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11), 1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009 DOI: https://doi.org/10.1016/j.jsg.2010.06.009
Feder, J. (1988). Fractals. Plenum Press, New York, USA, 282 pp. DOI: https://doi.org/10.1007/978-1-4899-2124-6
Feizi, F., KarbalaeiRamezanali, A. & Mansouri, E. (2017a). Calcic iron skarn prospectivity mapping based on fuzzy AHP method, a case Study in Varan area, Markazi province, Iran. Geosciences Journal, 21(1), 123-136. https://doi.org/10.1007/s12303-016-0042-9 DOI: https://doi.org/10.1007/s12303-016-0042-9
Feizi, F., Karbalaei-Ramezanali, A. & Tusi, H. (2017b). Mineral potential mapping via TOPSIS with hybrid AHP–Shannon entropy weighting of evidence: a case study for porphyry-cu, Farmahin area, Markazi Province, Iran. Natural Resources Research, 26(4), 553-570. https://doi.org/10.1007/s11053-017-9338-3 DOI: https://doi.org/10.1007/s11053-017-9338-3
Fry, N. (1979). Random point distributions and strain measurement in rocks. Tectonophysics, 60(1-2), 89-105. https://doi.org/10.1016/0040-1951(79)90135-5 DOI: https://doi.org/10.1016/0040-1951(79)90135-5
Haddad-Martim, P. M., Souza Filho, C. R. D., & Carranza, E. J. M. (2017). Spatial analysis of mineral deposit distribution: A review of methods and implications for structural controls on iron oxide-copper-gold mineralization in Carajás, Brazil. Ore Geology Reviews, 81, 230-244. https://doi.org/10.1016/j.oregeorev.2016.09.038 DOI: https://doi.org/10.1016/j.oregeorev.2016.09.038
Hassan Nezhad, A., Moore, F. & Aliabadi, M.A. (2001). Lineament controller of spatial distribution of copper deposits of Zn-Pb deposits in Iran, Using Fry analysis. 5th Symposium of Geological Society of Iran, Tehran University, Tehran, Iran.
Khakzad, A. & Jaafari, H. (2002). Mineralogy and economic geology of copper deposits of Harare district in Kerman province. 10th Symposium of Crystallography and Mineralogy, Tehran, Iran, August, 168-172.
Khoie, N., Ghorbani, M. & Tajbakhsh, P. (1999). Copper Deposits of Iran, Geological Survey of Iran (in Persian). Tehran, 421 pp.
Kreuzer, O., Blenkinsop, T., Morrison, R., & Peters, S. (2007). Ore controls in the Charters Towers goldfield, NE Australia: Constraints from geological, geophysical and numerical analyses. Ore Geology Reviews, 32(1-2), 37-80. https://doi.org/10.1016/j.oregeorev.2006.12.001 DOI: https://doi.org/10.1016/j.oregeorev.2006.12.001
Lisitsin, V. (2015). Spatial data analysis of mineral deposit point patterns: Applications to exploration targeting. Ore Geology Reviews, 71, 861-881. https://doi.org/10.1016/j.oregeorev.2015.05.019 DOI: https://doi.org/10.1016/j.oregeorev.2015.05.019
Mandelbrot, B. B. (1983). The Fractal geometry of nature. W. H. Freeman, San Francisco, CA, 14 pp. DOI: https://doi.org/10.1119/1.13295
Mansouri, E., Feizi, F., & Karbalaei Ramezanali, A. A. (2015). Identification of magnetic anomalies based on ground magnetic data analysis using multifractal modelling: a case study in Qoja-Kandi, East Azerbaijan Province, Iran. Nonlinear Processes in Geophysics, 22(5), 579-587. DOI: 10.5194/npgd-2-1137-2015 DOI: https://doi.org/10.5194/npg-22-579-2015
Mehrabi, A., Rangzan, K., & Zarasvandi, A., (2005). Where is significant location for the porphyry copper Deposits? A case study in south central Iranian volcanic belt. 9th symposium of Geological Society of Iran, The teacher Training University, Tehran, Iran.
Meshkani, S. A., Mehrabi, B., Yaghubpur, A., & Sadeghi, M. (2013). Recognition of the regional lineaments of Iran: Using geospatial data and their implications for exploration of metallic ore deposits. Ore Geology Reviews, 55, 48-63. https://doi.org/10.1016/j.oregeorev.2013.04.007 DOI: https://doi.org/10.1016/j.oregeorev.2013.04.007
Mirzababaei, G., Shahabpour, J., Zarasvandi, A. M., & Hayatolghey, S. (2016). Structural Controls on Cu Metallogenesis in the Dehaj Area, Kerman Porphyry Copper Belt, Iran: A Remote Sensing Perspective. Journal of Sciences, Islamic Republic of Iran, 27(3), 253 – 267.
Najafi, A., Abdi, M., Rahimi, B., & Motevali, K. (2010). Spatial integration of fray and fractal analyses in regional exploration: A case study from Bafgh-Posht-e-Badam, Iran. Geología Colombiana, 35, 113-130.
Padilla Garza, R. A., Titley, S. R., & Francisco Pimentel, B. (2001). Geology of the Escondida porphyry copper deposit, Antofagasta region Chile. Economic Geology, 96(2), 307-344. https://doi.org/10.2113/gsecongeo.96.2.307 DOI: https://doi.org/10.2113/gsecongeo.96.2.307
Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016a). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228-241. https://doi.org/10.1016/j.jafrearsci.2015.12.007 DOI: https://doi.org/10.1016/j.jafrearsci.2015.12.007
Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016b). Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165, 111-124. https://doi.org/10.1016/j.gexplo.2016.03.009 DOI: https://doi.org/10.1016/j.gexplo.2016.03.009
Parsa, M., Maghsoudi, A., Carranza, E. J. M., & Yousefi, M. (2017a). Enhancement and mapping of weak multivariate stream sediment geochemical anomalies in Ahar Area, NW Iran. Journal of Natural Resources Research, 26, 443-455. https://doi.org/10.1007/s11053-017-9346-3 DOI: https://doi.org/10.1007/s11053-017-9346-3
Parsa, M., Maghsoudi, A., Yousefi, M., & Carranza, E. J. M. (2017b). Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets. Journal of African Earth Sciences, 128, 5-15. https://doi.org/10.1016/j.jafrearsci.2016.11.021 DOI: https://doi.org/10.1016/j.jafrearsci.2016.11.021
Parsa, M., Maghsoudi, A., & Yousefi, M. (2017c). An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. International Journal of Applied Earth Observation and Geoinformation, 58, 157-167. https://doi.org/10.1016/j.jag.2017.02.006 DOI: https://doi.org/10.1016/j.jag.2017.02.006
Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2017d). Multifractal analysis of stream sediment geochemical data: Implications for hydrothermal nickel prospection in an arid terrain, eastern Iran. Journal of Geochemical Exploration, 181, 305-317. https://doi.org/10.1016/j.gexplo.2016.11.013 DOI: https://doi.org/10.1016/j.gexplo.2016.11.013
Parsa, M., Maghsoudi, A., & Yousefi, M. (2018a). Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran. Ore Geology Reviews, 92, 97-112. https://doi.org/10.1016/j.oregeorev.2017.11.013 DOI: https://doi.org/10.1016/j.oregeorev.2017.11.013
Parsa, M., Maghsoudi, A., & Yousefi, M. (2018b). A receiver operating characteristics-based geochemical data fusion technique for targeting undiscovered mineral deposits. Natural Resources Research, 27(1), 15-28. https://doi.org/10.1007/s11053-017-9351-6 DOI: https://doi.org/10.1007/s11053-017-9351-6
Parsa, M., & Maghsoudi, A. (2018). Controls on Mississippi Valley-Type Zn-Pb mineralization in Behabad district, Central Iran: Constraints from spatial and numerical analyses. Journal of African Earth Sciences, 140, 189-198. https://doi.org/10.1016/j.jafrearsci.2018.01.012 DOI: https://doi.org/10.1016/j.jafrearsci.2018.01.012
Pirajno, F. (2012). Hydrothermal mineral deposits: principles and fundamental concepts for the exploration geologist. Springer-Verlag, Berlin 709pp.
Pruess, S. A. (1995). Some remarks on the numerical estimation of the fractal dimension. Journal of Fractals in the Earth Sciences, 00, 65-75. DOI: 10.1007/978-1-4899-1397-5_3 DOI: https://doi.org/10.1007/978-1-4899-1397-5_3
Raines, G. L. (2008). Are fractal dimensions of the spatial distribution of mineral deposits meaningful. Journal of Progress in Geomathematics, 285–301. https://doi.org/10.1007/s11053-008-9067-8 DOI: https://doi.org/10.1007/978-3-540-69496-0_13
Ramezanali, A. K., Feizi, F., Jafarirad, A., & Lotfi, M. (2019). Geochemical Anomaly and Mineral Prospectivity Mapping for Vein-Type Copper Mineralization, Kuhsiah-e-Urmak Area, Iran: Application of Sequential Gaussian Simulation and Multivariate Regression Analysis. Natural Resources Research, 1-30. https://doi.org/10.1007/s11053-019-09565-7 DOI: https://doi.org/10.1007/s11053-019-09565-7
Ryan, P. D. & Dewey, J. F. (1990). A geological and tectonic cross-section of the Caledonides of western Ireland. Journal of the Geological Society, 173-180. https://doi.org/10.1144/gsjgs.148.1.0173 DOI: https://doi.org/10.1144/gsjgs.148.1.0173
Sillitoe, R. H. (1972). A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67, 184-197. https://doi.org/10.2113/gsecongeo.67.2.184 DOI: https://doi.org/10.2113/gsecongeo.67.2.184
Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105, 3-41. https://doi.org/10.2113/gsecongeo.105.1.3 DOI: https://doi.org/10.2113/gsecongeo.105.1.3
Soheili, M. (1981). Geological Quadrangle Map of Iran (1:250000 Series sheet) NO. H- 10.
Tanhaei, N., Hassan Nezhad, A., & Dabestani, N. (2010). Lineament controller of spatial distribution of copper deposits of copper deposits in Iran, Using Fry analysis. Initial symposium of Iranian Society of Economic Geology. Ferdowsi University of Mashhad, Mashhad, Iran.
Vearncombe, J., & Vearncombe, S. (1999). The spatial distribution of mineralization: applications of fry analysis. Journal of Economic Geology, 94(4), 475-486. https://doi.org/10.2113/gsecongeo.94.4.475 DOI: https://doi.org/10.2113/gsecongeo.94.4.475
Walker, R. T. (2006). A remote sensing study of active folding and faulting in southern Kerman province, S.E. Iran. Journal of Structural Geology, 28(4), 654-668. https://doi.org/10.1016/j.jsg.2005.12.014 DOI: https://doi.org/10.1016/j.jsg.2005.12.014
Xiao, F., Chen, J., Zhang, Z., Wang, C., Wu, G., & Agterberg, F. P. (2012). Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. Journal of Geochemical Exploration, 122, 90-100. https://doi.org/10.1016/j.gexplo.2012.04.010 DOI: https://doi.org/10.1016/j.gexplo.2012.04.010
Yaghoubpour, A., & Hassan Nezhad, A. A. (2006). The Spatial Distribution of Some Chromite Deposits in Iran, Using Fry Analysis. Journal of Sciences, Islamic Republic of Iran, 17(2), 147-152.
Yousefi, M., & Carranza, E. J. M. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69-81. https://doi.org/10.1016/j.cageo.2015.03.007 DOI: https://doi.org/10.1016/j.cageo.2015.03.007
Yousefi, M., & Carranza, E. J. M. (2017). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences, 128, 47-60. https://doi.org/10.1016/j.jafrearsci.2016.04.019 DOI: https://doi.org/10.1016/j.jafrearsci.2016.04.019
Zarasvandi, A. (2004). Magmatic and structural controls on localization of the Darreh-Zerreshk and Ali-Abad porphyry copper deposits, Yazd Province, Central Iran. [Doctoral thesis, Shiraz University], Shiraz, Iran, 280 pp.
Zarasvandi, A., Pourkaseb, H., & Jalili, Y. (2016). Investigation on the relationship between copper mineralization in Khezr Abad and Shahrebabak area: regions: Using Fractal and fry analyzes. Journal of Economic Geology, 7(2), 385-402.
Zhao, J., Chen, S., Zuo, R., & Carranza, E. J. M. (2011). Mapping complexity of spatial distribution of faults using fractal and multifractal models: vectoring towards exploration targets. Computers & Geosciences, 37(12), 1958-1966. https://doi.org/10.1016/j.cageo.2011.04.007 DOI: https://doi.org/10.1016/j.cageo.2011.04.007
Zuo, R., Agterberg, F. P., Cheng, Q., & Yao, L. (2009). Fractal characterization of the spatial distribution of geological point processes. International Journal of Applied Earth Observation and Geoinformation, 11(6), 394-402. https://doi.org/10.1016/j.jag.2009.07.001 DOI: https://doi.org/10.1016/j.jag.2009.07.001
Zuo, R., Wang, J., Chen, G., & Yang, M. (2015). Reprint of “Identification of weak anomalies: A multifractal perspective”. Journal of Geochemical Exploration, 154, 200-212. https://doi.org/10.1016/j.gexplo.2015.04.004 DOI: https://doi.org/10.1016/j.gexplo.2015.04.004
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2023 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.