Published
Application of life cycle assessment (LCA) methodology and economic evaluation for construction and demolition waste: a Colombian case study
Aplicación de la metodología de Análisis de Ciclo de Vida (ACV) y evaluación económica para los residuos de construcción y demolición: Un caso de estudio colombiano
DOI:
https://doi.org/10.15446/esrj.v25n3.82815Keywords:
waste, management, construction and demolition waste, Life Cycle Assessment, impact category (en)Residuos, gestión, residuos de construcción y demolición, Evaluación del ciclo de vida, categoría de impacto (es)
Downloads
The construction industry consumes more raw materials and energy than any other economic activity and generates the largest fraction of waste, known as construction and demolition waste (CDW). This waste has significant environmental implications, most notably in South American countries such as Colombia, where it is handled inappropriately. This study evaluated the management processes currently used for fractions of construction and demolition waste generated in Ibagué (Colombia). The environmental impacts of the management of 1 kg of CDW were also calculated. Other CDW management alternatives were evaluated. The percentage of the fraction of the waste and the treatment or management processes used were modified to determine its environmental and economic viability. The information was obtained through telephone interviews and visits to recycling plants, construction companies, quarries, government entities, and inert landfills. It was completed with secondary sources and the Ecoinvent v.2.2 databases. Life Cycle Assessment (LCA) methodology and the SimaPro 8 software were used to calculate the environmental impacts. An economic study of each management process and each alternative was also carried out. A comparison of the other options revealed the current choice contributes most to the environmental impacts in all categories.
This study indicates that the most beneficial alternative in environmental and economic terms in Ibagué (Colombia) is where 100% of the metals are recovered, 100% of excavated earth is reused, and 100% of the stone waste is recycled (alternative 3). This alternative remained the most favorable when a sensitivity analysis was carried out with different distances (30 km and 50 km).
La industria de la construcción no solo consume más materias primas y energía que cualquier otra actividad económica sino que también genera la mayor fracción de residuos, conocidos como residuos de construcción y demolición (RCD). Estos residuos presentan importantes implicaciones ambientales, especialmente en países de América del Sur como Colombia, donde se manejan de manera inapropiada. En este estudio se evaluó el sistema de gestión actual de los residuos de construcción y demolición (RCD) en Ibagué (Colombia) y se calcularon los impactos ambientales de la gestión de 1 kg de RCD. Se evaluaron otras alternativas de gestión de RCD para determinar su viabilidad ambiental y económica, en las cuales se modificó el porcentaje de la fracción de los residuos y el proceso de tratamiento o de gestión. Para la consecución de la información se realizaron entrevistas telefónicas y visitas a plantas de reciclaje, empresas constructoras, canteras, entidades gubernamentales y vertederos inertes en el país. Dicha información se completó con fuentes secundarias y con la base de datos Ecoinvent v.2.2. Para calcular los impactos ambientales se empleó la metodología de análisis de ciclo de vida (ACV) y el software SimaPro 8. También se realizó un estudio económico de cada proceso de gestión y de cada alternativa.
Una comparación de las alternativas reveló que la alternativa de gestión actual contribuye en mayor medida a los impactos ambientales en todas las categorías. Los resultados de este estudio indican que la alternativa más beneficiosa en términos ambientales y económicos en Ibagué es aquella en la que se recupera el 100% de los metales, se reutiliza el 100% de la tierra excavada y se recicla el 100% de los residuos de piedra (alternativa 3). Cuando se realizó un análisis de sensibilidad con diferentes distancias (30 km y 50 km), esta alternativa continuó siendo la más favorable.
References
Aguilar, M., & Ardila, F. (2010). Study of waste management alternatives generated by the construction and demolition of buildings in the city of Bogotá (Estudio de alternativas de manejo de escombros generados por la construcción y demolición de edificaciones en la ciudad de Bogotá). Industrial University of Santander. Specialization monograph. Bucaramanga, Colombia.
Blengini, G. A., & Garbarino, E. (2010). Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix. Journal of Cleaner Production, 18(10-11), 1021-1030. DOI:10.1016/j.jclepro.2010.01.027
Bovea, M. D. & Powell, J. C. (2016). Developments in life cycle assessment applied to evaluate the environmental performance of construction and demolition wastes. Waste Management, 50, 151-172. https://doi.org/10.1016/j.wasman.2016.01.036
Borghi, G., Pantini, S., & Rigamonti, L. (2018). Life cycle assessment of non-hazardous Construction and Demolition Waste (CDW) management in Lombardy Region (Italy). Journal of Cleaner Production, 184, 815-825. https://doi.org/10.1016/j.jclepro.2018.02.287
Bravo, M., De Brito, J., Pontes, J., & Evangelista, L. (2015). Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 77, 357–369. https://doi.org/10.1016/j.conbuildmat.2014.12.103
Bueno, G., Latasa, I. & Lozano, P. J. (2015). Comparative LCA of two approaches with different emphasis on energy or material recovery for a municipal solid waste management system in Gipuzkoa. Renewable and Sustainable Energy Reviews, 51, 449–459. https://doi.org/10.1016/j.rser.2015.06.021
Butera, S., Christensen, T. H., & Astrup, T. F. (2015). Life cycle assessment of construction and demolition waste management. Waste Management, 44, 196-205. https://doi.org/10.1016/j.wasman.2015.07.011
Carpenter, A., Jambeck, J. R., Gardner, K. & Weitz, K. (2013), Life Cycle Assessment of End-of-Life Management Options for Construction and Demolition Debris. Journal of Industrial Ecology, 17(3), 396-406. DOI: 10.1111/j.1530-9290.2012.00568.
Castaño J. O., Rodriguez, R. M., Lasso, L. A., Gomez Cabrera, A., & Ocampo, M. S. (2013). Management of construction and demolition waste in Bogotá: perspectives and limitations. Tecnura, 17(38), 121-129. http://www.scielo.org.co/pdf/tecn/v17n38/v17n38a10.pdf
Chávez Porras, A., Palacio León, O., & Guarin Cortes, N. L. (2014). Logistic unit for the recovery of construction and demolition waste: case study Bogotá C.D (Unidad logística de recuperación de residuos de construcción y demolición: estudio de caso Bogotá D.C). Ciencia e Ingeniería Neogranadina, 23, 95-118. http://www.scielo.org.co/pdf/cein/v23n2/v23n2a06.pdf
Coelho, A., & De Brito, J. (2012). Influence of Construction and Demolition Waste Management on the Environmental Impact of Buildings. Waste Management, 32(3), 532–541. DOI: http://dx.doi.org/10.1016/j.wasman.2011.11.011.
Coelho, A., & De Brito, J. (2013a). Environmental analysis of a construction and demolition waste recycling plant in Portugal – Part I: Energy consumption and CO2 emissions. Waste Management, 33(5), 1258-1267. DOI: https://doi.org/10.1016/j.wasman.2013.01.025
Coelho, A., & De Brito, J. (2013b). Environmental analysis of a construction and demolition waste recycling plant in Portugal – Part II: Environmental sensitivity analysis. Waste Management, 33, 147-161. https://doi.org/10.1016/j.wasman.2012.09.004
Colomer, F., Altabella, J. E. & Izquierdo, A. G. (2017). Application of inert wastes in the construction, operation and closure of landfills: Calculation tool. Waste Management, 59, pp.276–285. https://doi.org/10.1016/j.wasman.2016.10.041
Dahlbo, H., Bacher, J., Lähtinen, K., Jouttijärvi, T., Suoheimo, P., Mattila, T., (…) Saramäki, K. (2015). Construction and demolition waste management – a holistic evaluation of environmental performance. Journal of Cleaner Production, 107, 333-341. https://doi.org/10.1016/j.jclepro.2015.02.073
DANE (2015). National Administrative Department of Statistics (Departamento Administrativo Nacional de Estadística). Available at: https://colaboracion.dnp.gov.co/CDT/Inversiones%20y%20finanzas%20pblicas/Tolima%2015.pdf, accessed: 27/07/2017.
Escandón, J. C. (2011). Technical and economic diagnosis of the use of construction and demolition waste in buildings in the city of Bogotá (Diagnóstico técnico y económico del aprovechamiento de residuos de construcción y demolición en edificaciones en la ciudad de Bogotá). Final Degree Project. Pontifical Javeriana University. Bogotá D.C. https://repository.javeriana.edu.co/bitstream/handle/10554/7516/tesis603.pdf;jsessionid=F1B8A7A9ADCB48759FB2EBF32E84FD33?sequence=1
Guignot, S., Touzé, S., Von der Weid, F., Ménard, Y., & Villeneuve, J. (2015). Recycling construction and demolition wastes as building materials: A life cycle assessment. Journal of Industrial Ecology, 19(6), 1030–1043. https://doi.org/10.1111/jiec.12262
Heinonen, J., Säynäjoki, A., Junnonen, J. M., Pöyry, A., & Junnila, S. (2016). Pre-use phase LCA of a multi-story residential building: Can greenhouse gas emissions be used as a more general environmental performance indicator? Building and Environment, 95, pp.116–125. https://doi.org/10.1016/j.buildenv.2015.09.006
Hossain, M. U., Poon, C. S., Lo, I. M. C., & Cheng, J. C. P. (2016). Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation and Recycling, 109, 67–77. https://doi.org/10.1016/j.resconrec.2016.02.009
Hossain, M. U., Poon, C. S., Lo, I. M. C., & Cheng, J. C. P. (2017). Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resources, Conservation and Recycling, 120, 199–208. https://doi.org/10.1016/j.resconrec.2016.12.012
Hoxha, E., Habert, G., Lasvaux, S., Chevalier, J., & Le Roy, R. (2017). Influence of construction material uncertainties on residential building LCA reliability. Journal of Cleaner Production, 144, pp.33–47. https://doi.org/10.1016/j.jclepro.2016.12.068
Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and Demolition Waste Management in China through the 3R Principle. Resources, Conservation and Recycling, 129, 36–44. https://doi.org/10.1016/j.resconrec.2017.09.029
ICER. Regional Economic Situation Report (2016). Tolima, Ibagué. DANE- Banco de la República. Colombia. ISSN 1794-3582.
Jimenez, H. (2013). Evaluation of the current situation of the management of construction and demolition waste (CDW) in the municipality of Madrid (Evaluación de la situación actual del manejo de residuos de construcción y demolición (RCD) en el municipio de Madrid (Cundinamarca) (Colombia)). Final Career Project. Pontificia Universidad Javeriana. Science Faculty. Bogotá (Colombia), pp. 41. https://repository.javeriana.edu.co/handle/10554/11829
Jullien, A., Dauvergne, M. & Cerezo, V. (2014). Environmental assessment of road construction and maintenance policies using LCA. Transportation Research Part D: Transport and Environment, 29, 56-65. https://doi.org/10.1016/j.trd.2014.03.006
Koci, V., & Trecakova, T. (2011). Mixed municipal waste management in the Czech Republic from the point of view of the LCA method. The International Journal of Life Cycle Assessment volume, 16, 113-124. https://doi.org/10.1007/s11367-011-0251-4
Kucukvar, M., Egilmez, G., & Tatari, O. (2014). Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis. Waste Management & Research, 32(6), 500-508. DOI: 10.1177/0734242X14536457
Liu, G., Hao, Y., Dong, L., Yang, Z., Zhang, Y., & Ulgiati, S. (2017). An emergy-LCA analysis of municipal solid waste management. Resources, Conservation and Recycling, 120, pp.131-143. https://doi.org/10.1016/j.resconrec.2016.12.003
López, A. & Lobo, A. (2014). Emissions of C&D refuse in landfills: A European case. Waste Management, 34(8), 1446–1454. DOI: 10.1016/j.wasman.2014.04.004
Mejía, E., Osorno Bedoya, L., & Osorio, Vega, N. (2015). Construction waste: an option for soil recovery (Residuos de la construcción: una opción para la recuperación de suelos). Revista EIA, 12(2), 1-7. https://revistas.eia.edu.co/index.php/reveia/article/view/706/661
Mercante, I. T., Bovea, M. D., Ibáñez-Forés, V., & Arena, A. P. (2012). Life cycle assessment of construction and demolition waste management systems: a Spanish case study. The International Journal of Life Cycle Assessment, 17, 232-241. https://doi.org/10.1007/s11367-011-0350-2
Monahan, J. & Powell, J. (2011). An embodied carbon and energy analysis of modern methods of construction in housing: A case study using a lifecycle assessment framework. Energy and Buildings, 43 (1), 179–188. https://doi.org/10.1016/j.enbuild.2010.09.005
Milutinović, B., Stefanović, G., Dekić, P. S., Mijailović. I., & Tomić, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, pp. 917-926. https://doi.org/10.1016/j.energy.2017.02.167
NSR-10. (2010). Colombian Standards for Seismic Resistant Design and Construction. Title A - General requirements for Seismic Resistant Design and Construction. Reglamento colombiano de construcción sismo resistente. Ministerio de ambiente, vivienda y desarrollo territorial. Colombia.
Rosado, L. P., Vitale, P., Penteado C. S.G., Arena, U. (2019). Life cycle assessment of construction and demolition waste management in a large area of São Paulo State, Brazil. Waste Management, 15, 477-489. https://doi.org/10.1016/j.wasman.2019.01.011
Pinzón, A. (2014). Formulation of guidelines for the management of construction and demolition waste (CDW) in Bogotá. (Formulación de lineamientos para la gestión de Residuos de Construcción y Demolición (RCD) en Bogotá). Final Degree Project. Universidad Militar Nueva Granada. Bogotá, D.C. https://repository.unimilitar.edu.co/handle/10654/11004
PGIRS. (2015). Integral Solid Waste Management Plan of Ibagué. Alcaldía de Ibagué (Colombia).
POT. (2015). Territorial Ordinance Plan. Ibagué (Colombia).
PRé Consultants. (2017). Introduction to LCA with SimaPro. PRé Consultants, The Netherlands.
Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592–1600. DOI:10.1016/j.enbuild.2010.05.007
Resolución 1115/2012. (2012). Technical-Environmental Guidelines for the activities of exploitation and treatment of construction and demolition waste in the Capital District (Lineamientos Técnico-Ambientales para las actividades de aprovechamiento y tratamiento de los residuos de construcción y demolición en el Distrito Capital). District Secretary of the Environment. Bogotá-Colombia.
Restrepo, Á., Becerra, R., & Tibaquirá, J., E. (2016). Energetic and carbon footprint analysis in manufacturing process of bamboo boards in Colombia. Journal of Cleaner Production, 126, pp.563–571. https://doi.org/10.1016/j.jclepro.2016.02.144
Ripa, M., Fiorentino, G., Vacca, V., & Ulgiati, S. (2017). The relevance of site-specific data in Life Cycle Assessment (LCA). The case of the municipal solid waste management in the metropolitan city of Naples (Italy). Journal of Cleaner Production, 142(1), 445-460. https://doi.org/10.1016/j.jclepro.2016.09.149
Rodríguez, G., Medina, C., Alegre, F. J., Asensio, E., & (2015). Assessment of Construction and Demolition Waste plant management in Spain: in pursuit of sustainability and eco-efficiency. Journal of Cleaner Production, 90, 16-24. https://doi.org/10.1016/j.jclepro.2014.11.067
Suárez-Silgado, S. (2017). Stone materials from construction waste. Methodological proposal for environmental and economic evaluation (Materiales pétreos a partir de residuos de construcción. Propuesta metodológica para la evaluación ambiental y económica). Alemania. Editorial Publicia ISBN: 978-3-8416-8281-9, pág. 473.
Suárez-Silgado, S., Roca, X. & Gasso, S. (2016). Product-specific life cycle assessment of recycled gypsum as a replacement for natural gypsum in ordinary Portland cement: application to the Spanish context. Journal of Cleaner Production, 117, 150–159. https://doi.org/10.1016/j.jclepro.2016.01.044
Suárez-Silgado, S., Molina, J. D. A., Mahecha, L., & Calderón, L. (2018). Diagnóstico y propuestas para la gestión de los residuos de construcción y demolición en la ciudad de Ibagué (Colombia). Gestión y Ambiente, 21(1), 9-21. https://doi.org/10.15446/ga.v21n1.69637
Tošić, N., Marinković, S., Dasic, T., & Stanić, M. (2015). Multicriteria optimization of natural and recycled aggregate concrete for structural use. Journal of Cleaner Production, 87, 766-776. https://doi.org/10.1016/j.jclepro.2014.10.070
Ulubeyli, S., Kazaz, A. & Arslan, V. (2017). Construction and Demolition Waste Recycling Plants Revisited: Management Issues. Procedia Engineering, 172, 1190-1197. https://doi.org/10.1016/j.proeng.2017.02.139
Wang, T., Wang, J., Wu, P., Wang, J., He, Q., & Wang, X. (2018). Estimating the environmental costs and benefits of demolition waste using life cycle assessment and willingness-to-pay: A case study in Shenzhen. Journal of Cleaner Production, 172, 14-26. https://doi.org/10.1016/j.jclepro.2017.10.168
World Bank (2013). Doing Business Colombia. Available in: http://espanol.doingbusiness.org/content/dam/doingBusiness/media/Subnational-Reports/DB13-Colombia-Spanish.pdf.
Yay, A. S. E. (2015). Application of life cycle assessment (LCA) for municipal solid waste management: a case study of Sakarya. Journal of Cleaner Production, 94, 284-293. DOI:10.1016/j.jclepro.2015.01.089
Yeheyis, M., Hewage, K., Alam, M. S., Eskicioglu, C., & Sadiq, R. (2013). An overview of construction and demolition waste management in Canada: a lifecycle analysis approach to sustainability. Clean Technologies and Environmental Policy, 15(1), 81–91. https://doi.org/10.1007/s10098-012-0481-6
Yılmaz, T., Ercikdi, B., & Deveci, H. (2018). Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. Journal of Environmental Management, 222, 250-259. DOI:10.1016/j.jenvman.2018.05.075
Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31(4), 670-679. DOI:10.1016/j.wasman.2010.10.030
Zabalza Bribián, I., Valero Capilla, A., & Aranda Uson, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. https://doi.org/10.1016/j.buildenv.2010.12.002
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Atusa Zakerhosseini, Mohammad Ali Abdoli, Seyed Mohammadali Molayzahedi, Fatemeh Kiani Salmi. (2023). Life cycle assessment of construction and demolition waste management: a case study of Mashhad, Iran. Environment, Development and Sustainability, 26(10), p.25717. https://doi.org/10.1007/s10668-023-03703-1.
2. Aya Khudhur Abed, Maysoon Abdullah Mansor. (2023). Generation rate and forecasting of construction and demolition waste in Iraq. 2ND INTERNATIONAL CONFERENCE ON APPLIED RESEARCH AND ENGINEERING (ICARAE2022). 2ND INTERNATIONAL CONFERENCE ON APPLIED RESEARCH AND ENGINEERING (ICARAE2022). 2933, p.030004. https://doi.org/10.1063/5.0167800.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.