Published

2019-10-01

Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint

Técnica de inversión de parámetros físicos basada en la regularización de restricción de extensión de profundidad

DOI:

https://doi.org/10.15446/esrj.v23n4.84340

Keywords:

regularization, iterative continuation, anomaly separation, physical parameters, inversion, (en)
regularización, continuación iterativa, separación de anomalías, parámetros físicos, inversión, (es)

Downloads

Authors

  • Yang Wang College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Jun Li College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Xuben Wang College of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Xingxiang Jian College of Geophysics, Chengdu University of Technology, Chengdu 610059, China

Through the regularization downward continuation of gravity and magnetic anomalies, the depth of the field source can be solved. However, due to the Gibbs effect, the horizontal resolving power of the field source is poor. In view of this, based on the depth of field source established by regularization downward continuation, this paper proposes a physical property parameter inversion method based on iterative continuation and anomaly separation, which can effectively improve the inversion accuracy of superimposed anomaly physical parameters, and provide a new idea for solving the physical parameters of superposition gravity and magnetic anomalies.

A través de la regularización de la gravedad y las anomalías magnéticas, se puede resolver la profundidad de la fuente del campo. Sin embargo, debido al efecto Gibbs, el poder de resolución horizontal de la fuente de campo es poco. En vista de esto, basado en la profundidad de la fuente de campo establecida por la continuación de la regularización hacia abajo, este artículo propone un método de inversión de parámetros de propiedades físicas basado en la continuación iterativa y la separación de anomalías, que puede mejorar efectivamente la precisión de inversión de los parámetros físicos de anomalías superpuestas, y proporcionar una nueva idea para resolver los parámetros físicos de la superposición de gravedad y anomalías magnéticas.

References

Al Farajat, M., Schaefers, B., Al Hassanat, H., Al Atteyat, N., Al Jahed, N., & Khataibeh, J. (2015). Using GIS and geophysics in selecting suitable basins with freshwater aquifers for an efficient exploration strategy - A case study from Petra-region, Jordan. Earth Sciences Research Journal, 19(1), 39-50.

Boehm, C. & Ulbrich, M. (2015). A semismooth newton-cg method for constrained parameter identification in seismic tomography. Siam Journal on Scientific Computing, 37(5), S334-S364.

Chen, Y. (2015). Iterative Deblending With multiple constraints based on shaping regularization. IEEE Geoscience & Remote Sensing Letters, 12(11), 2247-2251.

Deng, C. L., Liu, H. J., Song, B. H., & Chen, J. (2014). Density parameters inversion for structures based on regularization method. Journal of Guilin University of Technology.

Fontchastagner, J., Lubin, T., Mezani, S., & Takorabet, N. (2018). Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model. Open Physics, 16(1), 21-26.

Li, C. & Zhang, F. (2017). AVA inversion based on the L1-norm-based likelihood function and the Total Variation Regularization constraint. Geophysics, 82(3), 1-54.

Mazgaj, W., Szular, Z., & Szczurek, P. (2017). Calculations of magnetic field in dynamo sheets taking into account their texture. Open Physics, 15(1): 1034-1038.

Raknes, E. B. & Arntsen, B. (2014). Time-lapse full-waveform inversion of limited-offset seismic data using a local migration regularization. Geophysics, 79(3), WA117-WA128.

Zhang, F., Dai, R., & Liu, H. (2014). Seismic inversion based on L1-norm misfit function and total variation regularization. Journal of Applied Geophysics, 109, 111-118.

Zhang, Y,. Yan, J., Li, F., Chen, C., Mei, B., Jin, S., & Dohm, J. H. (2015). A new bound constraints method for 3-D potential field data inversion using Lagrangian multipliers. Geophysical Journal International, 201(1), 267-275.

Zhu, Z. Q., Cao, S. J., Lu, G. Y. (2014). 3D gravity inversion with bound constraint based on hyper-parameter regularization. The Chinese Journal of Nonferrous Metals, 24(10), 2601-2608.

How to Cite

APA

Wang, Y., Li, J., Wang, X. and Jian, X. (2019). Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint. Earth Sciences Research Journal, 23(4), 331–338. https://doi.org/10.15446/esrj.v23n4.84340

ACM

[1]
Wang, Y., Li, J., Wang, X. and Jian, X. 2019. Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint. Earth Sciences Research Journal. 23, 4 (Oct. 2019), 331–338. DOI:https://doi.org/10.15446/esrj.v23n4.84340.

ACS

(1)
Wang, Y.; Li, J.; Wang, X.; Jian, X. Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint. Earth sci. res. j. 2019, 23, 331-338.

ABNT

WANG, Y.; LI, J.; WANG, X.; JIAN, X. Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint. Earth Sciences Research Journal, [S. l.], v. 23, n. 4, p. 331–338, 2019. DOI: 10.15446/esrj.v23n4.84340. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/84340. Acesso em: 7 oct. 2022.

Chicago

Wang, Yang, Jun Li, Xuben Wang, and Xingxiang Jian. 2019. “Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint”. Earth Sciences Research Journal 23 (4):331-38. https://doi.org/10.15446/esrj.v23n4.84340.

Harvard

Wang, Y., Li, J., Wang, X. and Jian, X. (2019) “Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint”, Earth Sciences Research Journal, 23(4), pp. 331–338. doi: 10.15446/esrj.v23n4.84340.

IEEE

[1]
Y. Wang, J. Li, X. Wang, and X. Jian, “Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint”, Earth sci. res. j., vol. 23, no. 4, pp. 331–338, Oct. 2019.

MLA

Wang, Y., J. Li, X. Wang, and X. Jian. “Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint”. Earth Sciences Research Journal, vol. 23, no. 4, Oct. 2019, pp. 331-8, doi:10.15446/esrj.v23n4.84340.

Turabian

Wang, Yang, Jun Li, Xuben Wang, and Xingxiang Jian. “Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint”. Earth Sciences Research Journal 23, no. 4 (October 1, 2019): 331–338. Accessed October 7, 2022. https://revistas.unal.edu.co/index.php/esrj/article/view/84340.

Vancouver

1.
Wang Y, Li J, Wang X, Jian X. Inversion Technique of Physical Parameters Based on Regularization Extension Depth Constraint. Earth sci. res. j. [Internet]. 2019Oct.1 [cited 2022Oct.7];23(4):331-8. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/84340

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Downloads

Download data is not yet available.

Article abstract page views

243