Published

2019-10-01

Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan

Campo de estrés paleotectónico y evolución tectónica desde el mesozoico en el área minera oriental de Pingdingshan

DOI:

https://doi.org/10.15446/esrj.v23n4.84502

Keywords:

paleo-tectonic stress field, gas occurrence, fault, fold, the eastern mining area of Pingdingshan (en)
campo de estrés paleo-tectónico, ocurrencia de gas, falla, doblez, la zona minera oriental de Pingdingshan (es)

Downloads

Authors

  • Weidong Gong College of Resources & Safety Engineering, China University of Mining & Technology, Beijing 100083, China

By observing a large number of conjugate shear joint data in the field and underground of the study area, the conjugate shear joint data is analyzed by the stereographic projection method, and the paleo-tectonic stress field experienced in the mining area since the Mesozoic is inferred. Based on the above research, the tectonic evolution process of the eastern mining area of Pingdingshan is discussed from the aspect of dynamic mechanism. The results show that: (1) The eastern mining area of Pingdingshan experienced the Indosinian, Yanshan early-middle, Yanshanian, and Xishanian tectonic stress fields, with the directions of NS, NW, NE, and NNE, respectively. (2) The tectonic evolution of the mining area can be divided into four stages: (a) The Indosinian tectonic stress field has the weakest effect on the study area, the coal-bearing strata are gradually uplifted by the stress field in this period, and some small structures are formed in the coal-bearing strata; (b) The early-middle Yanshanian tectonic stress field has a certain transformation effect on the coal-bearing strata in the eastern part of Pingdingshan. It mainly forms the secondary structure of the mining area such as Huoyan normal fault and small fault-fracture structure; (c) The late Yanshanian tectonic stress field has the strongest effect, and the control complex fold structure with the axis near NW direction is formed under the tectonic stress field of this period, such as Likou syncline, Baishishan anticline, Lingwushan syncline, Guozhuang anticline, Niuzhuang syncline, etc. The near-NW direction of the control fault structure is also formed under the action of the late Yanshanian tectonic stress field, such as the Niuzhuang reverse fault, the original No.11 mine reverse fault, etc.; (d) The Himalayan tectonic stress field mainly forms some secondary and small structures in the mining area and has a certain transformation effect on the structure formed by the early tectonic stress field. The tectonic pattern of the eastern mining area of Pingdingshan is the result of the above-mentioned tectonic stress field acting in sequence with the coal-bearing strata, causing structural deformation of the coal seam.


Tras recopilar una gran cantidad de datos de cizallamiento en campo y bajo tierra del área de estudio, se analizó esta información con el método de proyección estereográfica, y el campo de esfuerzo paleo-tectónico experimentado en el área minera desde que se infiere el Mesozoico. Luego de este análisis de información se discutió el proceso de evolución tectónica de la zona minera oriental de Pingdingshan con enfoque en el mecanismo dinámico. Los resultados muestran que: (1) El área minera oriental de Pingdingshan experimentó los campos de estrés tectónico Indosiniano, Yanshan temprano-medio, Yanshaniano y Xishaniano, con las direcciones de NS, NW, NE y NNE, respectivamente. (2) La evolución tectónica del área minera se puede dividir en cuatro etapas: (a) El campo de tensión tectónica Indosiniana tiene el efecto más débil en el área de estudio, los estratos portadores de carbón se elevan gradualmente por el campo de tensión en este período, y se forman algunas estructuras pequeñas en los estratos portadores de carbón; (b) El campo de tensión tectónica Yanshaniana de principios y medios tiene un cierto efecto de transformación en los estratos portadores de carbón en la parte oriental de Pingdingshan. Esto forma principalmente la estructura secundaria del área minera, como la falla normal de Huoyan y la estructura de fractura de fallas pequeñas; (c) El campo de estrés tectónico de Yanshanian tardío tiene el efecto más fuerte, y la compleja estructura de control de plegado con el eje cerca de la dirección NW se forma bajo el campo de estrés tectónico de este período, como la sinclinal de Likou, la anticlinal de Baishishan, la sinclinal de Lingwushan, la anticlinal de Guozhuang, la línea de sincronización de Niuzhuang, etc. La dirección cerca-NW de la estructura de falla de control también se forma bajo la acción del campo de tensión tectónica de Yanshanian tardío, como la falla inversa de Niuzhuang, la falla inversa original de mina No.11, etc.; (d) El campo de tensión tectónica del Himalaya forma principalmente algunas estructuras secundarias y pequeñas en el área minera, y tiene un cierto efecto de transformación en la estructura formada por el campo de tensión tectónica temprana. El patrón tectónico del área minera oriental de Pingdingshan es el resultado del campo de tensión tectónica mencionado anteriormente que actúa en secuencia con los estratos portadores de carbón, causando deformación estructural de la capa de carbón.


References

Arlegui, L. & Simon, J. L. (2001). Geometry and Distribution of Regional Joint Sets in a Non-homogeneous Stress Field: Case Study in the Ebro Basin (Spain). Journal of Structural Geology, 23, 2, 297-313.

Bai, T. X. & Pollard, D. D. (2000). Fracture Spacing in Layered Rocks: A New Explanation Based on the Stress Transition. Journal of Structural Geology, 22, 1, 43-57.

Cui, C. H. & Cai, Y. M. (2000). The Structure of Coalbed Methane Possession and Metamorphil Process in Pingdingshan Mining Area. Journal of Heibei Institute of Architectural Science and Technology, 2, 67-70.

De Guidi, G., Caputo, R., & Scudero, S. (2013). Regional and Local Stress Field Orientation Inferred from Quantitative Analyses of Extension Joints: Case study from Southern Italy. Tectonics, 32(2), 239-251.

Eyal, Y., Gross, M. R., Engelder, T., & Becker, A. (2001). Joint Development during Fluctuation of the Regional Stress Field in Southern Israel. Journal of Structural Geology, 23(2), 279-296.

Fang, H. H., Sang, S. X., Wang, J. L., Shiqi, L., & Ju, W. (2017). Simulation of Paleotectonic Stress Fields and Distribution Prediction of Tectonic Fractures at the Hudi Coal Mine, Qinshui Basin. Acta Geologica Sinica (English Edition), 91(6), 2007-2023.

Federico, L., Crispini, L., & Capponi, G. (2010). Fault-slip Analysis and Transpressional Tectonics: A Study of Paleozoic Structures in Northern Victoria Land, Antarctica. Journal of Structural Geology, 32(5), 667-684.

Foeken, J. P. T., Bertotti, G., Dunai, T. J. (2006). The Morphology of a Messinian Valley and Its Hinterland (Ventimiglia, NW Italy): A Miocene to Pliocene Reconstruction. Geological Journal, 41(5), 465-480.

Fosse, H. (2010). Structural Geology. Cambridge University Press, Cambridge.

Gong, W. & Guo, D. (2018). Control of the Tectonic Stress Field on Coal and Gas Outburst. Applied Ecology and Environmental Research, 16(6), 7413-7433.

Jia, C, Z., He, D. F., & Lu, J. M. (2004). Episodes and Geodynamic Setting of Himalayan Movement in China. Oil & Gas Geology, 2, 121-125.

Jiang, L., Qiu, Z., Wang, Q. C., Guo, Y., Wu, C., Wu, Z., & Zhenhua, X. (2016). Joint Development and Tectonic Stress Field Evolution in the Southeastern Mesozoic Ordos Basin, West Part of North China. Journal of Asian Earth Sciences, 127, 47-62.

Li, J. H. (1987). On the Structural Evolution of North China Plate. North China Earthquake Science, 1, 35-41.

Liu, S. F. & Zhang, G. W. (2005). Evolution Geodynamic of Basin/Mountain Systems in East Qinling-Dabieshan and Its Adjacent Regions, China. Geological Bulletin of China, 27(12), 1943-1960.

Mandl, G. (2005). Rock Joints. Berlin: Springer.

Mazzoli, S., Santini, S., Macchiavelli, C., & Ascione, A. (2015). Active Tectonics of the Outer Northern Apennines: Adriatic vs. Po Plain Seismicity and Stress Fields. Journal of Geodynamics, 84, 62-76.

Naimi-Ghassabian, N., Khatib, M., Nazari, H., & Heyhat, M. (2015). Present-day Tectonic Regime and Stress Patterns from the Formal Inversion of Focal Mechanism Data, in the North of Central-East Iran Blocks. Journal of African Earth Sciences, 111, 113-126.

Negrete-Aranda, R., Cañón-Tapia, E., Brandle, J. L., Ortega-Rivera, M. A., Lee, J. K. W., Spelz, R. M. & Hinojosa-Corona, A. (2010). Regional Orientation of Tectonic Stress and the Stress Expressed by Post-subduction High-magnesium Volcanism in Northern Baja California, Mexico: Tectonics and Volcanism of San Borja Volcanic Field. Journal of Volcanology and Geothermal Research, 192(2).

Nie, Z. S. (1985). The Yanshanian Movement in the North China. Scientia Geologica Sinica, 4, 320-333.

Pei, F., Ba, Y., & Wang, C. D. (2007). Characteristics and Evolution of Geological Structure in Pingdingshan Area. Beijing: Vast Plain Publishing House, 19-26.

Rawnsley, K. D., Peacock, D. C. P., Rives, T., & Petit, J. P. (1998). Joints in the Mesozoic Sediments around the Bristol Channel Basin. Journal of Structural Geology, 20, 12, 1641-1661.

Tang, Y., Yang, F., Lv, Q. Q., Tang, W. J. Wang, H. K. (2018). Analysis of the Tectonic Stress Field of SE Sichuan and its Impact on the Preservation of Shale Gas in Lower Silurian Longmaxi Formation of the Dingshan Region, China. Journal Geological Society of India, 92, 92-100.

Veloso, E. E., Gomila, R., Cembrano, J., González, R., Jensen, E., & Arancibia, G. (2015). Stress Fields Recorded on Large-scale Strike-slip Fault Systems: Effects on the Tectonic Evolution of Crustal Slivers during Oblique Subduction. Tectonophysics, 664, 244-255.

Wang, S. Y. (2017). Research and Exploitation of Resource Development and Utilization of Shendong Mining Area. Safety in Coal Mines, 48(S1), 104-108.

Wang, Y. Z. (2009). Analysis on Intra-plate Tectonic Evolution and Regional Dynamics Background of Henan Province. Zhongzhou Coal, 6, 30-32.

Wu, C., Zhang, X. Q., & Zhao, Y. K. (2000). Stratiform Geomorphology and Himalayan Tectonic Movement on the North China Mountains. Geography and Territorial Research, 3, 82-86.

Yan, J. W., Zhang, Y. Z, & Wang, Y. (2015). Characteristics of Gas Occurrence under Stepwise Tectonic Control in Pingdingshan Mining Area. Coal Geology & Exploration, 4302, 18-23.

Zhang, Y. Q., Dong, S. W., Zhao, Y., & Zhang, T. (2007). Jurassic Tectonics of North China: A Synthetic View. Acta Geologica Sinica, 11, 1462-1480.

Zhang, Z. M. & Zhang, Y. G. (2003). Tectonic Evolution and Control of Coal and Gas Outburst in Pingdingshan Mining Area. Beijing: China Coal Industry Publishing House, 3-8.

Zhou, H. R. & Wang, Z. Q. (1999). Feature and Tectono-paleogeography Evolution of the Southern Margin of the North China Continent in Mesoproterozoic and Neoproterozoic Ear. Geoscience, 3, 261-267.

How to Cite

APA

Gong, W. (2019). Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan. Earth Sciences Research Journal, 23(4), 347–357. https://doi.org/10.15446/esrj.v23n4.84502

ACM

[1]
Gong, W. 2019. Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan. Earth Sciences Research Journal. 23, 4 (Oct. 2019), 347–357. DOI:https://doi.org/10.15446/esrj.v23n4.84502.

ACS

(1)
Gong, W. Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan. Earth sci. res. j. 2019, 23, 347-357.

ABNT

GONG, W. Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan. Earth Sciences Research Journal, [S. l.], v. 23, n. 4, p. 347–357, 2019. DOI: 10.15446/esrj.v23n4.84502. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/84502. Acesso em: 14 jul. 2024.

Chicago

Gong, Weidong. 2019. “Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan”. Earth Sciences Research Journal 23 (4):347-57. https://doi.org/10.15446/esrj.v23n4.84502.

Harvard

Gong, W. (2019) “Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan”, Earth Sciences Research Journal, 23(4), pp. 347–357. doi: 10.15446/esrj.v23n4.84502.

IEEE

[1]
W. Gong, “Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan”, Earth sci. res. j., vol. 23, no. 4, pp. 347–357, Oct. 2019.

MLA

Gong, W. “Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan”. Earth Sciences Research Journal, vol. 23, no. 4, Oct. 2019, pp. 347-5, doi:10.15446/esrj.v23n4.84502.

Turabian

Gong, Weidong. “Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan”. Earth Sciences Research Journal 23, no. 4 (October 1, 2019): 347–357. Accessed July 14, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/84502.

Vancouver

1.
Gong W. Paleo-tectonic Stress Field and Tectonic Evolution since the Mesozoic in the Eastern Mining Area of Pingdingshan. Earth sci. res. j. [Internet]. 2019 Oct. 1 [cited 2024 Jul. 14];23(4):347-5. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/84502

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Deyang Wang, Yuanping Cheng, Liang Yuan, Liang Wang, Hongxing Zhou. (2023). Experimental Study of Multiple Physical Properties of Tectonic Coal near a Minor Fault: Implications for Coal and Gas Outburst. Energy & Fuels, 37(8), p.5878. https://doi.org/10.1021/acs.energyfuels.3c00433.

2. Jilin Wang, Youkun Wang, Xiaozhi Zhou, Wenxin Xiang, Changran Chen. (2023). Paleotectonic Stress and Present Geostress Fields and Their Implications for Coalbed Methane Exploitation: A Case Study from Dahebian Block, Liupanshui Coalfield, Guizhou, China. Energies, 17(1), p.101. https://doi.org/10.3390/en17010101.

3. Deyang Wang, Yuanping Cheng, Liang Yuan, Chenghao Wang, Liang Wang. (2023). Implications of Geological Conditions on Gas Contents: A Case Study in the Pingdingshan Coalfield. Energy & Fuels, 37(9), p.6465. https://doi.org/10.1021/acs.energyfuels.2c04374.

Dimensions

PlumX

Article abstract page views

457

Downloads

Download data is not yet available.