Published

2021-07-19

Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing

Trazabilidad de la contaminación por metales pesados en fuentes de agua de atracciones turísticas a través del Sistema de Información Geográfica

DOI:

https://doi.org/10.15446/esrj.v25n2.84631

Keywords:

GIS remote sensing technology, tourist attractions, heavy metal pollution, pollution tracing, coefficient of variation, correlation analysis (en)
Tecnología de teledetección SIG, atracciones turísticas, contaminación por metales pesados, rastreo de contaminación, coeficiente de variación, Análisis de correlación (es)

Downloads

Authors

  • Jianghong Mo School of Tourism Management, Guilin Tourism University, Guilin 541006 China
  • Xinling Tian College of Tourism Management, Enshi Polytechnic, Enshi 445000 China
  • Wei Shen School of Business Administration, Zhongnan University of Economics and Low, Wuhan 430074 China

To effectively prevent heavy metal pollution in water sources in tourist attractions, clarify the degree of control of heavy metal pollution sources, and improve the accuracy of tracing results, a GIS-based remote sensing method of heavy metal pollution in tourist attractions is proposed. Using GIS spatial analysis method, the DEM elevation data monitored by remote sensing is obtained, the watershed geographic information is compiled, and the GPS obtains the longitude and latitude coordinates to locate the source of heavy metal pollution. The plug-in application framework is designed, and the watershed geographic information and plug-in application framework are integrated to build the pollution tracing platform. According to the mixing direction of pollutants after entering the water source, the migration and diffusion coordinate system of heavy metal pollution in the water source is established. The spatial-temporal distribution function model of heavy metal pollutants in water sources is constructed through the migration, transformation, and concentration of heavy metal pollutants in water sources. The tracing results of heavy metal pollution in water sources of scenic spots are obtained. The results showed that the order of variation coefficient of heavy metal pollution elements was Cr > Cd > Cu > Ni > Zn > Pb. The spatial distribution of heavy metal pollution elements was extremely uneven. There was a certain positive correlation between Ni and Cr, and the correlation coefficient of Cu and Zn was 0.78. The positive correlation was very significant, and the homology was very strong. Moreover, the identification result of the proposed method is very close to the real value, which can accurately trace the source of heavy metal pollution in the water source of tourist attractions, with small tracing error and high accuracy of tracing result evaluation.

Para prevenir eficazmente la contaminación por metales pesados en las fuentes de agua en las atracciones turísticas, aclarar el grado de control de las fuentes de contaminación por metales pesados y mejorar la precisión de los resultados de rastreo, se propone un método de detección remota basado en SIG de la contaminación por metales pesados en las atracciones turísticas. Utilizando el método de análisis espacial SIG, se obtienen los datos de elevación DEM monitoreados por teledetección, se compila la información geográfica de la cuenca y se obtienen las coordenadas de longitud y latitud mediante GPS para ubicar la fuente de contaminación por metales pesados. El marco de la aplicación de complemento está diseñado, y la información geográfica de la cuenca hidrográfica y el marco de la aplicación de complemento están integrados para construir la plataforma de rastreo de la contaminación. De acuerdo con la dirección de mezcla de los contaminantes después de ingresar a la fuente de agua, se establece el sistema de coordenadas de migración y difusión de la contaminación por metales pesados en la fuente de agua. A través de la migración, transformación y concentración de contaminantes de metales pesados en la fuente de agua, se construye el modelo de función de distribución espacio-temporal de los contaminantes de metales pesados en la fuente de agua y se obtienen los resultados de rastreo de la contaminación por metales pesados en la fuente de agua de los lugares escénicos. Los resultados mostraron que el orden del coeficiente de variación de los elementos contaminantes por metales pesados fue Cr> Cd> Cu> Ni> Zn> Pb. La distribución espacial de los elementos contaminantes por metales pesados fue extremadamente desigual. Hubo cierta correlación positiva entre Ni y Cr, y el coeficiente de correlación de Cu y Zn fue de 0,78. La correlación positiva fue muy significativa y la homología fue muy fuerte. Además, el resultado de la identificación del método propuesto está muy cerca del valor real, que puede rastrear con precisión la fuente de contaminación por metales pesados en la fuente de agua de las atracciones turísticas, con un pequeño error de rastreo y una alta precisión en la evaluación del resultado del rastreo.

References

Ahmed, W., Lobos, A., Senkbeil, J., Peraud, J., Gallard, J., & Harwood, V.J. (2018). Evaluation of the novel crAssphage marker for sewage pollution tracking in storm water outlets in Tampa, Florida. Water Research, 131(15), 142. DOI: 10.1016/j.watres.2017.12.011

Jia, X., Fu, T., Hu, B., Shi, Z., & Zhu, Y. (2020). Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory. Journal of Hazardous Materials, 393(2), 122424. https://doi.org/10.1016/j.jhazmat.2020.122424

Kang, M. J., Kwon, Y. K., Yu, S., Lee, P. K., Park, H. S., & Song, N. (2019). Assessment of Zn pollution sources and apportionment in agricultural soils impacted by a Zn smelter in South Korea. Journal of Hazardous Materials, 364(15), 475-487. https://doi.org/10.1016/j.jhazmat.2018.10.046

Kong, J., Guo, Q., Wei, R., Strauss, H., Zhu, G., Li, S., Song, Z., Chen, T., Song, B., Zhou, T., & Zheng, D. (2018). Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China. Science of the Total Environment, 637-638(1), 1035-1045. https://doi.org/10.1016/j.scitotenv.2018.05.034

Liu, B., Wang, J., Xu, M., Zhao, L., & Wang, Z. (2019). Spatial distribution, source apportionment and ecological risk assessment of heavy metals in the sediments of Haizhou Bay national ocean park, China. Marine Pollution Bulletin, 149(11), 110651.1-110651.8. https://doi.org/10.1016/j.marpolbul.2019.110651

Liu, J., Wang, J., Tsang, D. C. W., Xiao, T., Chen, Y., & Hou, L. (2018). Emerging thallium pollution in China and source tracing by thallium isotopes. Environmental Science & Technology, 52(21), 11977-11979. https://doi.org/10.1021/acs.est.8b05282

Liu, J., Yin, M., Luo, X., Xiao, T., Wu, Z., Li, N., Wang, J., Zhang, W., Lippold, H., Belshaw, N.S., Feng, Y., & Chen, Y. (2019). The mobility of thallium in sediments and source apportionment by lead isotopes. Chemosphere, 219(3), 864-874. https://doi.org/10.1016/j.chemosphere.2018.12.041

Liu, Y., Gao, T., Xia, Y., Wang, Z., Liu, C., Li, S., Wu, Q., Qi, M., & Lv, Y. (2020). Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area. Environmental Pollution, 267(9), 115616. https://doi.org/10.1016/j.envpol.2020.115616

Merino-Mascorro, J. A., Hernandez-Rangel, L. G., Heredia, N., & Garcia, S. (2018). Bacteroidales as indicators and source trackers of fecal contamination in tomatoes and strawberries. Journal of Food Protection, 81(9), 1439-1444. DOI: 10.4315/0362-028X.JFP-18-073

Ren, Y., Guo, X., & Ma L. (2020). Feature extraction simulation of contaminated soil radar image based on enhancing operator. Computer simulation, 37(04), 5-8, 61.

Smith, S. D. A., Banister, K., Fraser, N., Edgar, R. J. (2018). Tracing the source of marine debris on the beaches of northern new south wales, Australia: The bottles on beaches program. Marine Pollution Bulletin, 126(1), 304-307. DOI: 10.1016/j.marpolbul.2017.11.022

Sun, J., Yu, R., Hu, G., Su, G., & Zhang Y. (2018). Tracing of heavy metal sources and mobility in a soil depth profile via isotopic variation of Pb and Sr. Catena, 171, 440-449. https://doi.org/10.1016/j.catena.2018.07.040

Wang, Q., Chen, Q., Yan, D., & Xin, S. (2018). Distribution, ecological risk, and source analysis of heavy metals in sediments of Taizihe River, China. Environmental Earth Sciences, 77(16), 569. https://doi.org/10.1007/s12665-018-7750-6

Wang, X., Zhang, L., Zhao, Z., & Cai, Y. (2018). Heavy metal pollution in reservoirs in the hilly area of southern China: Distribution, source apportionment and health risk assessment. Science of the Total Environment, 634(1), 158-169. DOI: 10.1016/j.scitotenv.2018.03.340

Xu, D., Wang, R., Wang, W., Ge, Q., Zhang, W., Chen, L., & Chu, F. (2019). Tracing the source of Pb using stable Pb isotope ratios in sediments of eastern Beibu Gulf, South China Sea. Marine Pollution Bulletin, 141(4), 127-136. https://doi.org/10.1016/j.marpolbul.2019.02.028

How to Cite

APA

Mo, J. ., Tian, X. . and Shen, W. . (2021). Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing. Earth Sciences Research Journal, 25(2), 207–214. https://doi.org/10.15446/esrj.v25n2.84631

ACM

[1]
Mo, J. , Tian, X. and Shen, W. 2021. Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing. Earth Sciences Research Journal. 25, 2 (Jul. 2021), 207–214. DOI:https://doi.org/10.15446/esrj.v25n2.84631.

ACS

(1)
Mo, J. .; Tian, X. .; Shen, W. . Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing. Earth sci. res. j. 2021, 25, 207-214.

ABNT

MO, J. .; TIAN, X. .; SHEN, W. . Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing. Earth Sciences Research Journal, [S. l.], v. 25, n. 2, p. 207–214, 2021. DOI: 10.15446/esrj.v25n2.84631. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/84631. Acesso em: 28 mar. 2025.

Chicago

Mo, Jianghong, Xinling Tian, and Wei Shen. 2021. “Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing”. Earth Sciences Research Journal 25 (2):207-14. https://doi.org/10.15446/esrj.v25n2.84631.

Harvard

Mo, J. ., Tian, X. . and Shen, W. . (2021) “Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing”, Earth Sciences Research Journal, 25(2), pp. 207–214. doi: 10.15446/esrj.v25n2.84631.

IEEE

[1]
J. . Mo, X. . Tian, and W. . Shen, “Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing”, Earth sci. res. j., vol. 25, no. 2, pp. 207–214, Jul. 2021.

MLA

Mo, J. ., X. . Tian, and W. . Shen. “Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing”. Earth Sciences Research Journal, vol. 25, no. 2, July 2021, pp. 207-14, doi:10.15446/esrj.v25n2.84631.

Turabian

Mo, Jianghong, Xinling Tian, and Wei Shen. “Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing”. Earth Sciences Research Journal 25, no. 2 (July 19, 2021): 207–214. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/84631.

Vancouver

1.
Mo J, Tian X, Shen W. Tracing the source of heavy metal pollution in water sources of Tourist Attractions Based on GIS remote sensing. Earth sci. res. j. [Internet]. 2021 Jul. 19 [cited 2025 Mar. 28];25(2):207-14. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/84631

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Xiaojun Zheng, Ohidul Alam, Yiwen Zhou, Daolin Du, Guanlin Li, Weihong Zhu. (2024). Heavy metals detection and removal from contaminated water: A critical review of adsorption methods. Journal of Environmental Chemical Engineering, 12(6), p.114366. https://doi.org/10.1016/j.jece.2024.114366.

2. Zhang Jing, Liu Kun Yi, Guo Chen Lin, Zhang Jian-min, Xing Bing. (2023). Assessment of potential ecological risk based on the vertical characteristics of potential toxic elements in sediments from a high-density cage culture reservoir in China. Ecotoxicology and Environmental Safety, 262, p.115136. https://doi.org/10.1016/j.ecoenv.2023.115136.

3. Min Wang, Shumin Liu, Chenxu Wang, Jun Yang. (2023). Spatial distribution and influencing factors of high-quality tourist attractions in Shandong Province, China. PLOS ONE, 18(7), p.e0288472. https://doi.org/10.1371/journal.pone.0288472.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 5
  • Usage
  • SciELO - Full Text Views: 39
  • SciELO - Abstract Views: 15
  • Captures
  • Mendeley - Readers: 31
  • Mendeley - Readers: 3

Article abstract page views

506

Downloads