Published

2020-01-01

Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China

Combinación de los métodos de microscopio electrónico de barrido e intrusión capilar de mercurio a presión en la caracterización de la distribución de gargantas de poro en areniscas compactas y su relación con la diagénesis: caso de estudio en la Formación Yanchang, cuenca Ordos, China

DOI:

https://doi.org/10.15446/esrj.v24n1.84838

Keywords:

Tight sandstone, Pore size structure, SEM, porosimetry, diagenetic effects (en)
areniscas compactas, estructura del tamaño de poros, microscopio electrónico de barrido, porosimetría, efectos diagenéticos, (es)

Downloads

Authors

  • Wei Wang College of chemistry and chemical engineering, Yulin University, Yulin, PR China
  • Caili Yu Petrochina Changqing Oilfield Company, Xi’an, PR China
  • Le Zhao Petrochina Changqing Oilfield Company, Xi’an, PR China
  • Shuang Xu Petrochina Changqing Oilfield Company, Xi’an, PR China
  • Lei Gao Petrochina Changqing Oilfield Company, Xi’an, PR China

Determining the characteristics of pore-throat structures, including the space types present and the pore size distribution, is essential for the evaluation of reservoir quality in tight sandstones. In this study, the results of various testing methods, including scanning electron microscopy (SEM), pressure-controlled porosimetry (PCP) and rate-controlled porosimetry (RCP), were compared and integrated to characterize the pore size distribution and the effects of diagenesis upon it in tight sandstones from the Ordos Basin, China. The results showed that reservoir spaces in tight sandstones can be classified into those with three types of origins (compaction, dissolution, and clay-related) and that the sizes and shapes of pore space differ depending on origin. Considering the data obtained by mercury injection porosimetry and the overestimation of pore radii by pressure-controlled porosimetry, the full-range pore size distribution of tight sandstones can be determined by combining data from PCP with corrected RCP data. The pore-throat radii in tight sandstone vary from 36 nm to 200 μm, and the distribution curve is characterized by three peaks. The right peak remains similar across the sample set and corresponds to residual intergranular pores and dissolution pores. The middle and left peaks show variation between samples due to the heterogeneity and complexity of nano-scale throat bodies. The average micro-scale pore content is 33.49%, and nano-scale throats make up 66.54%. The nano-scale throat spaces thus dominate the reservoir space of the tight sandstones. Compaction, dissolution, carbonate cementation, and clay cementation have various effects on pore-throats. Compaction and carbonate cementation decrease pore body content. Pore-bridging clay cementation decreases throat space content. As pore-lining clay cementation preserves pore space.

Para evaluar la calidad de yacimiento en areniscas compactas es importante determinar las características de las gargantas de poros, entre ellas las clases de espacio presentes y la distribución de los tamaños de poros. En este trabajo se comparan e integran los resultados de varios métodos de prueba, entre ellos el microscopio electrónico de barrido (SEM), porosimetría de presión controlada (PCP), y porosimetría de velocidad controlada (RCP), para caracterizar la distribución de los tamaños de poros y los efectos de la diagénesis en las areniscas compactas de la cuenca Ordos, en China. Los resultados muestran que los espacios de yacimiento en areniscas compactas se pueden clasificar de acuerdo con tres tipos de origen (compactación, disolución y arcilloso) y que los tamaños y formas del espacio de poros difiere de acuerdo con el origen. De acuerdo con la información obtenida por la porosimetría con inyección de mercurio y la sobreestimación de los radios de poros por la porosimetría de presión controlada, se puede determinar el rango completo de la distribución del tamaño de poros en areniscas compactas al combinar la información del método PCP con la información corregida del método RCP. El radio de la garganta de poro en areniscas compactas varía de 36 nm a 200 μm; la curva de distribución se caracteriza por tres picos. El pico de la derecha permanece similar a lo largo de todas las muestras y corresponde a los poros intergranulares residuales y a los poros de disolución. El pico central y el de la izquierda muestran la variación entre las muestras debido a la heterogeneidad y la complejidad de los cuerpos de garganta a nano-escala. El promedio del contenido poroso a micro-escala es de 33.49 %, y las gargantas a nano-escala ascienden al 66.54 %. Esto significa que los espacios de gargantas a nano-escala dominan el espacio del yacimiento en areniscas compactas. La compactación, disolución, cementacion de carbonato y cementación arcillosa tienen varios efectos en las gargantas de poros. La compactación y la cementación de carbonato decrecen el contenido del cuerpo del poro. El puente arcilloso de poros reduce el contenido del espacio de las gargantas. Mientras que la cementación arcillosa de revestimiento de poros preserva el espacio entre los poros.

References

Berger, A., Gier, S. & Krois, P. (2009). Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones: Evidence from Cretaceous sandstones of the Sawan gas field, Pakistan. AAPG bulletin, 93(5), 595-615.

Daigle, H. & Johnson, A. (2016). Combining mercury intrusion and nuclear magnetic resonance measurements using percolation theory. Transport in Porous Media, 111(3), 669-679.

Gane, P.A. et al., 2004. Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures. Industrial & engineering chemistry research, 43(24), 7920-7927.

Gao, H., Wang, C., Cao, J., He, M. & Dou, L. (2019). Quantitative study on the stress sensitivity of pores in tight sandstone reservoirs of Ordos basin using NMR technique. Journal of Petroleum Science and Engineering, 172, 401-410.

Ghanizadeh, A., Clarkson, C., Aquino, S., Ardakani, O. & Sanei, H. (2015). Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization. Fuel, 153, 664-681.

Hillier, S., 2000. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay minerals, 35(1), 291-302.

Huang, S. J., Xie, L. W. & Zhang, M. (2004). Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China. Journal- Chengdu University of Technology, 31, 273-281.

Jarvie, D. M., Hill, R. J., Ruble, T. E. & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG bulletin, 91(4), 475-499.

Jia, J., Yin, W., Qiu, N., Wang, G., Ma, L., Liu, Y., & Liu, N. (2017). Migration and accumulation of crude oil in Upper Triassic tight sand reservoirs on the southwest margin of Ordos Basin, Central China: A case study of the Honghe Oilfield. Geological Journal, 53(5), 2280-2300. DOI: https://doi.org/10.1002/gj.3065.

Klaver, J., Desbois, G., Urai, J. L. & Littke, R. (2012). BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany. International Journal of Coal Geology, 103, 12-25.

Loucks, R. G. & Ruppel, S. C. (2007). Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG bulletin, 91(4), 579-601.

Mayo, S., Josh, M., Nesterets, Y., Esteban, L., Pervukhina, M., Clennell, M., Maksimenko, A., & Hall, C. J. (2015). Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal. Fuel, 154, 167-173.

Nelson, P. H. (2009). Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG bulletin, 93(3), 329-340.

Rezaee, R., Saeedi, A. & Clennell, B. (2012). Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. Journal of Petroleum Science and Engineering, 88, 92-99.

Wang, X., Peng, X., Zhang, S., Du, Z. & Zeng, F. (2018). Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir. Fuel, 224, 280-288.

Waples, D. W. (2002). Evolution of sandstone porosity through time. The modified Scherer Model: a calculation method applicable to 1-D maturity modeling and perhaps to reservoir prediction. Natural Resources Research, 11(4), 257-272.

Washburn, E. W. (1921). The dynamics of capillary flow. Physical review, 17(3), 273.

Wu, H., Zhang, C., Ji, Y., Liu, R., Cao, S., Chen, S., Zhang, Y., ... Liu, G. (2018). Pore throat characteristics of tight sandstone of Yanchang Formation in eastern Gansu, Ordos Basin. Petroleum Research, 3(1), 33-43. DOI: https://doi.org/10.1016/j.ptlrs.2017.11.001

Xi, K., Cao, Y., Haile, B. G., Zhu, R., Jahren, J., Bjorlykke, K., Zhang, X., & Hellevang, H. (2016). How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Marine and Petroleum Geology, 76, 1-15.

Xiao, D., Guo, S., Xu, Q., Lu, Z. & Lu, S. (2017a). Type and size distribution of nanoscale pores in tight gas sandstones: a case study on lower cretaceous shahezi formation in songliao basin of NE China. Journal of Nanoscience and Nanotechnology, 17(9), 6337-6346.

Xiao, D., Jiang, S., Thul, D., Huang, W., Lu, Z., & Lu, S. (2017b). Combining rate-controlled porosimetry and NMR to probe full-range pore throat structures and their evolution features in tight sands: A case study in the Songliao Basin, China. Marine and Petroleum Geology, 83, 111-123.

Yan, W., Sun, J., Cheng, Z., Li, J., Sun, Y., Shao, W., & Shao, Y. (2017). Petrophysical characterization of tight oil formations using 1D and 2D NMR. Fuel, 206, 89-98.

Yang, Y., Li, W. & Ma, L. (2005). Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bulletin, 89(2), 255-269.

Yao, Y. & Liu, D. (2012). Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel, 95, 152-158.

Yao, Y., Liu, D., Che, Y., Tang, D., Tang, S., & Huang, W. (2010). Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel, 89(7), 1371-1380.

Yuan, H. & Swanson, B. (1989). Resolving pore-space characteristics by rate- controlled porosimetry. SPE Formation Evaluation, 4(01), 17-24.

Zhang, L., Lu, S., Xiao, D. & Li, B. (2017). Pore structure characteristics of tight sandstones in the northern Songliao Basin, China. Marine and Petroleum Geology, 88, 170-180.

Zhang, W., Yang, H., Hou, L. & Liu, F. (2009). Distribution and geological significance of 17α (H)-diahopanes from different hydrocarbon source rocks of Yanchang Formation in Ordos Basin. Science in China Series D: Earth Sciences, 52(7), 965-974.

Zhao, H., Ning, Z., Wang, Q., Zhang, R., Zhao, T., Niu, T., Zeng, Y. (2015). Petrophysical characterization of tight oil reservoirs using pressure- controlled porosimetry combined with rate-controlled porosimetry. Fuel, 154, 233-242.

Zhu, H., Zhong, D., Yao, J., Niu, X., Liang, X., & Zhao, Y. (2014). Microscopic characteristics and formation mechanism of Upper Triassic Chang 7 tight oil reservoir in the southwest Ordos basin. Journal of China University of Mining and Technology, 43, 853-863.

Zou, C., Yang, Z., Tao, S. Z., Yuan, X. J., Zhu, R. K., Hou, L. H., Wu, S. T. ... Pang, Z. L. (2013). Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos Basin, North-Central China. Earth-Science Reviews, 126, 358-369.

How to Cite

APA

Wang, W., Yu, C., Zhao, L., Xu, S. and Gao, L. (2020). Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China. Earth Sciences Research Journal, 24(1), 19–28. https://doi.org/10.15446/esrj.v24n1.84838

ACM

[1]
Wang, W., Yu, C., Zhao, L., Xu, S. and Gao, L. 2020. Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China. Earth Sciences Research Journal. 24, 1 (Jan. 2020), 19–28. DOI:https://doi.org/10.15446/esrj.v24n1.84838.

ACS

(1)
Wang, W.; Yu, C.; Zhao, L.; Xu, S.; Gao, L. Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China. Earth sci. res. j. 2020, 24, 19-28.

ABNT

WANG, W.; YU, C.; ZHAO, L.; XU, S.; GAO, L. Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China. Earth Sciences Research Journal, [S. l.], v. 24, n. 1, p. 19–28, 2020. DOI: 10.15446/esrj.v24n1.84838. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/84838. Acesso em: 28 mar. 2024.

Chicago

Wang, Wei, Caili Yu, Le Zhao, Shuang Xu, and Lei Gao. 2020. “Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China”. Earth Sciences Research Journal 24 (1):19-28. https://doi.org/10.15446/esrj.v24n1.84838.

Harvard

Wang, W., Yu, C., Zhao, L., Xu, S. and Gao, L. (2020) “Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China”, Earth Sciences Research Journal, 24(1), pp. 19–28. doi: 10.15446/esrj.v24n1.84838.

IEEE

[1]
W. Wang, C. Yu, L. Zhao, S. Xu, and L. Gao, “Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China”, Earth sci. res. j., vol. 24, no. 1, pp. 19–28, Jan. 2020.

MLA

Wang, W., C. Yu, L. Zhao, S. Xu, and L. Gao. “Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China”. Earth Sciences Research Journal, vol. 24, no. 1, Jan. 2020, pp. 19-28, doi:10.15446/esrj.v24n1.84838.

Turabian

Wang, Wei, Caili Yu, Le Zhao, Shuang Xu, and Lei Gao. “Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China”. Earth Sciences Research Journal 24, no. 1 (January 1, 2020): 19–28. Accessed March 28, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/84838.

Vancouver

1.
Wang W, Yu C, Zhao L, Xu S, Gao L. Combining SEM and Mercury Intrusion Capillary Pressure in the characterization of pore-throat distribution in tight sandstone and its modification by diagenesis: A case study in the Yanchang Formation, Ordos Basin, China. Earth sci. res. j. [Internet]. 2020 Jan. 1 [cited 2024 Mar. 28];24(1):19-28. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/84838

Download Citation

CrossRef Cited-by

CrossRef citations6

1. Wei Lin, Zhenkai Wu, Xizhe Li, Zhengming Yang, Mingyi Hu, Denglin Han, Chenchen Wang, Jizhen Zhang. (2022). Digital characterization and fractal quantification of the pore structures of tight sandstone at multiple scales. Journal of Petroleum Exploration and Production Technology, 12(9), p.2565. https://doi.org/10.1007/s13202-022-01502-4.

2. Wei Wang, Xinyu Li, Zhikun Wei, Yuandan Xin, Rong Xiao, Hongxin Yang, Xiaoliang Chen. (2023). Effect of CO2–Brine–Rock Interactions on the Pore Structure of the Tight Sandstone during CO2 Flooding: A Case Study of Chang 7 Member of the Triassic Yanchang Formation in the Ordos Basin, China. ACS Omega, 8(4), p.3998. https://doi.org/10.1021/acsomega.2c06805.

3. Ihab Shigidi, Saber Chemkhi. (2023). Capillary Pressure Determination Using Thermodynamic Desorption Isotherms and Porosity Measurements. Chemical Engineering & Technology, 46(7), p.1432. https://doi.org/10.1002/ceat.202200504.

4. Wei Wang, Yahui Li, Xiaoliang Chen. (2021). Microscope dynamic characterization of oil charging in tight sandstone using a physical simulation experiment. Journal of Petroleum Science and Engineering, 200, p.108379. https://doi.org/10.1016/j.petrol.2021.108379.

5. Wei Wang, Ruyang Wang, Lina Wang, Zhengyang Qu, Xinyan Ding, Chaoli Gao, Wangcai Meng. (2023). Pore Structure and Fractal Characteristics of Tight Sandstones Based on Nuclear Magnetic Resonance: A Case Study in the Triassic Yanchang Formation of the Ordos Basin, China. ACS Omega, 8(18), p.16284. https://doi.org/10.1021/acsomega.3c00937.

6. Wei Wang, Weizhen Li, Shuang Xu. (2022). Classifications of the Reservoir Space of Tight Sandstone Based on Pore Structure, Connectivity, and Fractal Character: A Case Study from the Chang 7 Member of the Triassic Yanchang Formation in the Ordos Basin, China. ACS Omega, 7(12), p.10627. https://doi.org/10.1021/acsomega.2c00252.

Dimensions

PlumX

Article abstract page views

514

Downloads

Download data is not yet available.