Published

2021-04-16

Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province

Variabilidad de fractura en basaltos y su efecto en la erosión fluvial: un estudio de caso en la Provincia Volcánica de Paraná

DOI:

https://doi.org/10.15446/esrj.v25n1.85098

Keywords:

River erosion, Bedrock river, Basalts, Fractures. (en)
Erosión fluvial, Lecho rocoso, basalto, fracturas (es)

Downloads

Authors

  • Adalto Gonçalves Lima Universidade Estadual do Centro-Oeste https://orcid.org/0000-0002-6054-702X
  • Marcos Aurelio Pelegrina Universidade Estadual do Centro-Oeste
  • Murilo Pontarolo Universidade Estadual do Centro-Oeste

The variation in the structural characteristics (cooling joints and tectonic fractures) of basaltic flows implies potential variability in the intensity of erosion by plucking. The erosive behavior of the rivers that sculpt these areas depends on their interaction with the diverse fracture systems. In view of this, we analyzed the effect of fracture variability in basalts on erosion in a bedrock river reach located in the Continental Volcanic Province of the Paraná Basin, southern Brazil. The 120-m-long reach is influenced somewhat by a possible fault that crosses it near one end. The fracture density and fracture direction were evaluated through field photogrammetry in seven sample areas distributed along the reach. The fracture direction and main erosion axes were also surveyed by remote piloted aircraft (RPA) aerial imaging. Tectonic fractures were identified in the field; they do not always appear in the survey of the sample areas but are evident in the RPA survey. The main erosion axes coincide with the principal fracture directions (tectonic fractures), which are disposed obliquely to the channel flow direction, making an average angle of 50°. The more abundant and multidirectional cooling joints act to control the plucking process and not to determine the erosion direction. The fracture density decreases with increasing distance from the fault crossing zone (from 9.62 to 3.73 m/m²), although the lower value is influenced by the presence of an amygdaloidal basalt zone. The higher fracture density favors more intense plucking.

La variedad de características estructurales (juntas de enfriamiento y fracturas tectónicas) de los derrames basálticos implica una variabilidad potencial en la intensidad del proceso de erosión fluvial por extracción de bloques (plucking). El comportamiento erosivo de los ríos que esculpen estas áreas depende de la interacción con la diversidad de los sistemas de fractura. En vista de esto, buscamos analizar el efecto de la variabilidad de las fracturas en los basaltos sobre la erosión en un tramo fluvial de lecho rocoso, ubicado en la Provincia Volcánica Continental del Paraná, en el sur de Brasil. El tramo, de 120 m de largo, está parcialmente sujeto a la influencia de una posible falla que lo atraviesa cerca de uno de sus extremos. Evaluamos la densidad y dirección de fracturas, mediante fotogrametría de campo, en siete áreas de muestra distribuidas a lo largo del tramo y la dirección de las fracturas en el tramo integral mediante imagen aérea de Remote Piloted Aircraft (RPA). Con la imagen de RPA, también se identificaron los principales ejes de erosión. Fracturas tectónicas visto en el campo no siempre aparecen en la inspección de las áreas de muestra, pero son evidentes en la imagen de RPA. Los ejes principales de erosión coinciden con las direcciones principales de fractura (tectónicas), que son oblicuas a la dirección del flujo del canal, formando un ángulo promedio de 50°. Las diaclasas, más abundantes y multidireccionales, funcionan como controles sobre el proceso de plucking y no como determinantes de la dirección de la erosión. La densidad de las fracturas disminuye progresivamente con la distancia desde el punto de cruce de la falla (de 9.62 a 3.73 m/m²), aunque el valor más bajo está influenciado por una zona de basalto amigdaloide. La mayor densidad de fracturas favorece la intensificación de la erosión por extracción de bloques.

References

Arioli, E. E., Licht, O. A. B., Vasconcelos, E. M. G., Bonnet, K. L. & Santos, E. M. (2008). Faciologia vulcânica da Formação Serra Geral na região de Guarapuava, Paraná. 4 Simpósio de Vulcanismo e Ambientes Associados, Foz do Iguaçu. Sociedade Brasileira de Geologia.

Bondre, N. R., Duraiswami, R. A. & Dole, G. (2004). A brief comparison of lava flows from the Deccan Volcanic Province and the Columbia-Oregon Plateau Flood Basalts: Implications for models of flood basalt emplacement. Journal of Earth System Science, 113(4), 809-817.

DeGraff, J. M., & Aydin, A. (1993). Effect of thermal regime on growth increment and spacing of contraction joints in basaltic lava. Journal of Geophysical Research: Solid Earth, 98(B4), 6411-6430.

Dubinski, I. M., & Wohl, E. (2013). Relationships between block quarrying, bed shear stress, and stream power: A physical model of block quarrying of a jointed bedrock channel. Geomorphology, 180, 66-81.

Eyles, N., Arnaud, E., Scheidegger, A. E. & Eyles, C. H. (1997). Bedrock jointing and geomorphology in southwestern Ontario, Canada: an example of tectonic predesign. Geomorphology, 19(1-2), 17-34.

Faust, G. T. (1977). Joint systems in the Watchung basalt flows, New Jersey. Geological Survey professional paper, 864-B.

Fernandes, A. J., Maldaner, C. H., Negri, F., Rouleau, A. & Wahnfried, I. D. (2016). Aspects of a conceptual groundwater flow model of the Serra Geral basalt aquifer (Sao Paulo, Brazil) from physical and structural geology data. Hydrogeology Journal, 24(5), 1199-1212.

Frank, H. T., Gomes, M. E. B. & Formoso, M. L. L. (2009). Review of the areal extent and the volume of the Serra Geral Formation, Paraná Basin, South America. Pesquisas em Geociências, 36(1), 49-57.

George, M. F., Sitar, N., & Sklar, L. (2015). Experimental evaluation of rock erosion in spillway channels. 49th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California. American Rock Mechanics Association, 1735-1740.

Grant, J. V. & Kattenhorn, S. A. (2004). Evolution of vertical faults at an extensional plate boundary, southwest Iceland. Journal of Structural Geology, 26(3), 537-557.

Hancock, G. S., Anderson, R. S. & Whipple, K. X. (1998). Beyond power: bedrock river incision process and form. In: Tinkler, K. & Wohl, E.E. (Eds.), Rivers over Rock: Fluvial Processes in Bedrock Channels. American Geophysical Union, Washington, DC, 35-60.

Jerram, D. A. & Widdowson, M. (2005). The anatomy of Continental Flood Basalt Provinces: geological constraints on the processes and products of flood volcanism. Lithos, 79(3-4), 385-405.

Kattenhorn, S. A., Aydin, A., & Pollard, D. D. (2000). Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields. Journal of Structural Geology, 22(1), 1-23.

Lima, A. G. & Binda, A. L. (2013). Lithologic and structural controls on fluvial knickzones in basalts of the Paraná Basin, Brazil. Journal of South American Earth Sciences, 48, 262-270.

Lima, A. G. & Flores, D. M. (2017). River slopes on basalts: Slope-area trends and lithologic control. Journal of South American Earth Sciences, 76, 375-388.

Lopes, K. (2008). Caracterização morfológica, petrográfica e química dos derrames da província magmática do Paraná com ênfase para as rochas aflorantes no município de Guarapuava e PR. Master Thesys. Departamento de Geologia, UFPR, Curitiba.

Mauldon, M., Dunne, W. M & Rohrbaugh Jr., M. B. (2001). Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. Journal of Structural Geology, 23, 247-258.

Miller, J. (1991). The influence of bedrock geology on knickpoint development and channel bed degradation along dowcutting streams in South-central Indiana. Journal of Geology, 99, 591-605.

Moir, H., Lunn, R. J., Shipton, Z. K. & Kirkpatrick, J. D. (2010). Simulating brittle fault evolution from networks of pre-existing joints within crystalline rock. Journal of Structural Geology, 32(11), 1742-1753.

Nardy, A. J. R. (1995). Geologia e Petrologia do Vulcanismo Mesozoico da Região Central da Bacia do Paraná. PhD Thesis. IGCE-UNESP, Rio Claro, SP.

Patrick Muffler, L. J., Clynne, M. A. & Champion, D. E. (1994). Late Quaternary normal faulting of the Hat Creek basalt, northern California. Geological Society of America Bulletin, 106(2), 195-200.

Peacock, D. C. P. (2001). The temporal relationship between joints and faults. Journal of Structural Geology, 23(2-3), 329-341.

Pelletier, J. D., Engelder, T., Comeau, D., Hudson, A., Leclerc, M., Youberg, A., & Diniega, S. (2009). Tectonic and structural control of fluvial channel morphology in metamorphic core complexes: The example of the Catalina-Rincon core complex, Arizona. Geosphere, 5(4), 363–384.

Piccirillo, E. M., Comin-Chiaramonti, P., Melfi, A. J., Stolfa, D., Bellieni, G., Marques, L. S., Giaretta, A., Nardy, A. J. R., Pinese, J. P. P., Raposo, M. I. B. & Roisenberg, A. (1988). Petrochemistry of continental flood Basalt-Rhyolitic suites and related intrusives from the Parana Basin, Brazil. In: Piccirillo, E.M., Melfi, A.J. (Eds.), The Mesozoic Flood Volcanism of the Parana Basin: Petrogenetic and Geophysical Aspects. Instituto Geofísico, Astronômico e Ciências Atmosféricas. Universidade de São Paulo, São Paulo, 107¬–156.

Puffer, J. H., & Student, J. J. (1992). Volcanic structures, eruptive style, and posteruptive deformation and chemical alteration of the Watchung flood basalts, New Jersey. Eastern North American Mesozoic Magmatism. Geological Society of America, Boulder, Special Papers, 268, 261-277.

Rogers, M. A., Budding, K. E. & Cristie, C. V. L. (1996). Distinguishing tectonic joints from cooling joints in the Bandelier tuff (Pleistocene), Pajarito Plateau, Los Alamos County, New Mexico. New Mexico Geological Society Guidebook, 47th Field Conference, Jemez Mountain Region, p. 293-300.

Scheidegger, A. E. (1978). The tectonic significance of joints in the Canary Islands. Rock mechanics, 11(2), 69-85.

Scott, D. N., & Wohl, E. E. (2019). Bedrock fracture influences on geomorphic process and form across process domains and scales. Earth Surface Processes and Landforms, 44(1), 27–45.

Serviço Geológico do Paraná (2013). O Grupo Serra Geral no Estado do Paraná. Mineropar, Curitiba, 452 pp.

Small, E. E., Blom, T., Hancock, G. S., Hynek, B. M., & Wobus, C. W. (2015). Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments. Journal of Geophysical Research: Earth Surface, 120(8), 1455-1469.

Thordarson, T., & Self, S. (1998). The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes? Journal of Geophysical Research, 103(B11), 411-445.

Turner, S., Regelous, M., Kelley, S., Hawkesworth, C. J., Mantovani, M. S. M. (1994). Magmatism and continental break-up in the South Atlantic: high precision 40Ar-39Ar geochronology. Earth and Planetary Science Letters, 121(3-4), 333–348.

Vye-Brown, C., Self, S., & Barry, T. L. (2013). Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA. Bulletin of Volcanology, 75(3), 697.

Walker, G. P. L. (1971). Compound and simple lava flows and flood basalts. Bulletin Volcanologique, 35(3), 579-590.

Whipple, K. X., Hancock, G. S. & Anderson, R. S. (2000a). River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation. Geological Society of America Bulletin, 112(3), 490-503.

Whipple, K. X., Snyder, N. P., & Dollenmayer, K. (2000b). Rates and processes of bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in the Valley of Ten Thousand Smokes, Alaska. Geology, 28(9), 835-838.

Wilkinson, C., Harbor, D. J., Helgans, E. & Kuelner, J. P. (2018). Plucking phenomena in nonuniform flow. Geosphere, 14(5), 2157-2170.

How to Cite

APA

Lima, A. G., Pelegrina, M. A. and Pontarolo, M. (2021). Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province. Earth Sciences Research Journal, 25(1), 13–19. https://doi.org/10.15446/esrj.v25n1.85098

ACM

[1]
Lima, A.G., Pelegrina, M.A. and Pontarolo, M. 2021. Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province. Earth Sciences Research Journal. 25, 1 (Apr. 2021), 13–19. DOI:https://doi.org/10.15446/esrj.v25n1.85098.

ACS

(1)
Lima, A. G.; Pelegrina, M. A.; Pontarolo, M. Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province. Earth sci. res. j. 2021, 25, 13-19.

ABNT

LIMA, A. G.; PELEGRINA, M. A.; PONTAROLO, M. Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province. Earth Sciences Research Journal, [S. l.], v. 25, n. 1, p. 13–19, 2021. DOI: 10.15446/esrj.v25n1.85098. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/85098. Acesso em: 10 mar. 2025.

Chicago

Lima, Adalto Gonçalves, Marcos Aurelio Pelegrina, and Murilo Pontarolo. 2021. “Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province”. Earth Sciences Research Journal 25 (1):13-19. https://doi.org/10.15446/esrj.v25n1.85098.

Harvard

Lima, A. G., Pelegrina, M. A. and Pontarolo, M. (2021) “Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province”, Earth Sciences Research Journal, 25(1), pp. 13–19. doi: 10.15446/esrj.v25n1.85098.

IEEE

[1]
A. G. Lima, M. A. Pelegrina, and M. Pontarolo, “Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province”, Earth sci. res. j., vol. 25, no. 1, pp. 13–19, Apr. 2021.

MLA

Lima, A. G., M. A. Pelegrina, and M. Pontarolo. “Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province”. Earth Sciences Research Journal, vol. 25, no. 1, Apr. 2021, pp. 13-19, doi:10.15446/esrj.v25n1.85098.

Turabian

Lima, Adalto Gonçalves, Marcos Aurelio Pelegrina, and Murilo Pontarolo. “Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province”. Earth Sciences Research Journal 25, no. 1 (April 16, 2021): 13–19. Accessed March 10, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/85098.

Vancouver

1.
Lima AG, Pelegrina MA, Pontarolo M. Fracture variability in basalts and its effect on river erosion: a case study in the Paraná Volcanic Province. Earth sci. res. j. [Internet]. 2021 Apr. 16 [cited 2025 Mar. 10];25(1):13-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/85098

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Diego Moraes Flores, Adalto Gonçalves Lima. (2024). Levantamento de Fraturas em Leito Fluvial por meio de VANT (Veículo Aéreo Não Tripulado): calibração da altura de voo. GEOGRAFIA (Londrina), 33(2), p.9. https://doi.org/10.5433/2447-1747.2024v33n2p9.

Dimensions

PlumX

  • Usage
  • SciELO - Full Text Views: 23
  • SciELO - Abstract Views: 8
  • Captures
  • Mendeley - Readers: 8

Article abstract page views

267

Downloads