Published
Study on Optimization Method of Spatial Structure Characteristics of Peak Forest Landform in Wulingyuan Scenic Area
Estudio sobre el método de optimización de las características de la estructura espacial de la forma del pico del relieve forestal en el área escénica de Wulingyuan
DOI:
https://doi.org/10.15446/esrj.v24n1.85206Keywords:
Wulingyuan, Scenic Area, Peak Forest Landscape, Spatial Structure, Characteristics, Optimization (en)Wulingyuan, Area escenica, pico del relieve forestal, Estructura espacial, Características, Mejoramiento (es)
Downloads
To protect the ecological environment of peak forest landform and maintain its integrity and stability, the optimization method of spatial structure characteristics of peak forest landform in Wulingyuan Scenic Area was studied. By using GIS and digital topographic analysis to study the basic features of sandstone peak forest landform, Wulingyuan peak forest landform and karst peak forest have great differences in lithological composition, weathering resistance is better than Cheltenham Badland landform; by using tree theory to analyze the features of Wulingyuan peak forest landform, according to area weight serialization of contour tree nodes, we can know the depression area. The karstification is stronger than that of the peak forest area, and the surface is relatively fragmented. Based on different landscape indices, the landscape pattern of Wulingyuan peak forest is analyzed. The fragmentation degree of vegetation is lower, and the fragmentation degree of building landscape is first increased, then decreased, and finally intensified. The proportion of artificial landscape decreases year by year and the trend of fragmentation is obvious. Based on the present situation of spatial structure characteristics of Wulingyuan peak forest landform, optimization methods such as combining centralization with decentralization and improving the quality of artificial landscape ecosystem were put forward.
Para proteger el entorno ecológico de la forma del pico del relieve forestal y mantener su integridad y estabilidad, se estudió el método de optimización de las características de la estructura espacial del pico del relieve forestal en el área escénica de Wulingyuan. Al utilizar el GIS y el análisis topográfico digital para estudiar las características básicas de la forma del pico del relieve forestal de arenisca, la forma de relieve forestal del pico de Wulingyuan y el pico del bosque de karst tienen grandes diferencias en la composición litológica, la resistencia a la intemperie es mejor que la forma de relieve de Cheltenham Badland; al utilizar la teoría de los árboles para analizar las características de la forma del pico de relieve forestal de Wulingyuan, de acuerdo con la serialización del peso del área de los nodos del árbol de contorno, podemos conocer el área de depresión. La karstificación es más fuerte que la del área del pico del bosque, y la superficie está relativamente fragmentada. Basado en diferentes índices de paisaje, se analiza el patrón de paisaje del pico del bosque Wulingyuan. El grado de fragmentación de la vegetación es menor, y el grado de fragmentación de la construcción del paisaje primero aumenta, luego disminuye y finalmente se intensifica. La proporción de paisaje artificial disminuye año tras año y la tendencia de fragmentación es obvia. Basado en la situación actual de las características de la estructura espacial de la forma del pico de relieve forestal de Wulingyuan, se presentaron métodos de optimización como la combinación de la centralización con la descentralización y la mejora de la calidad del ecosistema del paisaje artificial.
References
Catania, G., Hulbe, C., & Conway, H. (2017). Grounding-line basal melt rates determined using radar-derived internal stratigraphy. Journal of Glaciology 56(56), 545-554.
Changqing, D., Luo, D., Zhang, C., Guo, D., & Wang, Y. H. (2017). Study on screening method of lithium ion power battery. Chinese Journal of Power Sources, 41(7), 977–980.
Cole, S, Weinberg, D. H., Frenk, C. S., & Ratra, B. (2018). Large-scale structure in COBE-normalized cold dark matter cosmogonies. Monthly Notices of the Royal Astronomical Society, 289(1), 37-51.
Colgan, P. M., Amidon, W. H., & Thurkettle, S. A. (2017). Inland dunes on the abandoned bed of Glacial Lake Chicago indicate eolian activity during the Pleistocene-Holocene transition, southwestern Michigan, USA. Quaternary Research, 87(1), 66-81.
Davies, L. J. M., Bremer, M. N., Stanway, E. R., Husband, K., Lehnert, M. D., & Mannering, E. J. A. (2018). Identifying clustering at high redshift through actively star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 438(4), 2732-2752.
Fang, H., Ji, B., Deng, X., Ying, J., Zhou, G., Shi, Y., Xu, L., Tao, J., Zhou, Y., Li, C., & Zheng, H. (2018). Effects of topographic factors and aboveground vegetation carbon stocks on soil organic carbon in Moso bamboo forests. Plant and Soil, 433(5882), 363-376.
Goad, M. R., & Korista, K. T. (2018). Interpreting broad emission-line variations – I. Factors influencing the emission-line response. Monthly Notices of the Royal Astronomical Society, 444(1), 43-61.
Hart, J. K. (2017). Identifying fast ice flow from landform assemblages in the geological record: a discussion. Annals of Glaciology, 28(1), 59-66.
Jiang, Y. W. (2017). Study on the Characteristics of Complex Networks in Network User Behavior. Journal of China Academy of Electronics and Information Technology, 12(5), 452-457.
Klongvessa, P., Lu, M., & Chotpantarat, S. (2018). Response of the flood peak to the spatial distribution of rainfall in the Yom River basin, Thailand. Stochastic Environmental Research and Risk Assessment, 32(10), 2871-2887.
Kristensen, N. P., Johansson, J., Jonzén, N., & Smith, H. G. (2018). Evolution of resident bird breeding phenology in a landscape with heterogeneous resource phenology and carryover effects. Evolutionary Ecology, 32(5), 509-528.
Liang, W., Li, S., & Hung, F. (2017). Analysis of the contributions of topographic, soil, and vegetation features on the spatial distributions of surface soil moisture in a steep natural forested headwater catchment. Hydrological Processes, 31(22), 3796–3809.
Li, Q. L., Zhang, Z. P., Shi, W. S., Jiang, Z., Zhao, J., & Shi, W. (2018). Brain Tumor Images Retrieval Method Based on Spatial Pixel Intensity. Journal of Jilin University(Science Edition), 56(3), 214-218.
Liu, Y. C., Huang, Y., & Li, X.. (2018). Research on Neutral-point Potential of Three-level NPC Inverter Based on Fuzzy Virtual Space Vector Modulation. Journal of power supply, 16(1), 61-66.
Moreno, M., Saco, P. M., Merino-Martin, L., Espigares, T., & Nicolau, J. M. (2017). Landform-Water-Vegetation Feedbacks: Exploring Ecosystem Stability and Restoration Potential in Semiarid Hillslopes. Indian Journal of Dermatology Venereology & Leprology, 78(3), 423-435.
Payo, A., Favis-Mortlock, D., Dickson, M., Hall, J. W., Hurst, M. D., Walkden, M. J. A., Townend, I., Ives, M. C., Nicholls, R. J., & Ellis, M. A. (2017). Coastal Modelling Environment version 1.0: a framework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts. Geoscientific Model Development, 10(7), 1-45.
Sylvestre, T., Copland, L., Demuth, M. N., & Sharp, M. (2017). Spatial patterns of snow accumulation across Belcher Glacier, Devon Ice Cap, Nunavut, Canada. Journal of Glaciology, 59(217), 255-264.
Timbe, E., Feyen, J., Timbe, L., Crespo, P., Célleri, R., Windhorst, D., Frede, H. G., & Breuer, L. (2017). Multi‐criteria assessment of water dynamics reveals sub‐catchment variability in a seemingly homogeneous tropical cloud forest catchment. Hydrological Processes, 31(7), 1456-1468.
Wang, Z. W., Jin, P., & Pu, X. Y. (2019). Construction of power supply service risk identification model based on clustering analysis. Automation & Instrumentation, 232(2), 179-182.
Zhang, X., Gang, W., Su, Q., Guo, Q., Zhang, C., & Chen, B. (2017). An improved fuzzy algorithm for image segmentation using peak detection, spatial information and reallocation. Soft Computing, 21(8), 2165-2173.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Yuliang Fu, Yuanbei Cao, Hongfei Wang, Zhenjia He, Shunsheng Wang. (2021). The effects of different fertilizer rates on water and nitrogen transport characteristics in the wetted body of bubbled-root irrigation. Arabian Journal of Geosciences, 14(18) https://doi.org/10.1007/s12517-021-07881-y.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2020 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.