Published

2020-01-01

Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area

Estudio sobre la fuerza interna de la geomembrana del relleno sanitario en un área contaminada con metales pesados

DOI:

https://doi.org/10.15446/esrj.v24n1.85231

Keywords:

Geomenbrane, stress, clay interface. (en)
Geomembrana, esfuerzo, interfaz de arcilla. (es)

Downloads

Authors

  • Hongzhou Zhang Institute of Architectural Civil Engineering, Langfang Normal University, Langfang, 065000, China

In order to analyze the tension stress of Geomembrane in the seepage control system of landfill in heavy metal contaminated area under the action of the overlying landfill weight, the internal force of Geomembrane in landfill is studied in this paper. Firstly, according to the internal force analysis of Geomembrane model, the basic equation of Geomembrane is obtained, and the equation is analyzed by finite difference numerical solution, so as to analyze the internal force of Geomembrane in landfill. The method can analyze three stress states of Geomembrane-clay interface at different positions: elastic state, softening state and residual state, which makes the stress analysis of Geomembrane on landfill slope more reasonable. Parametric analysis shows that when the strength loss and the difference between residual displacement and peak displacement are small in the softening stage, the peak strength of Geomembrane-clay interface has little influence on the maximum tensile stress of Geomembrane, and its residual strength is the main controlling factor; and when the softening characteristics of Geomembrane-clay interface are obvious, the influence of peak strength and residual displacement is more obvious.

Con el fin de analizar el esfuerzo de tensión de Geomembrane en el sistema de control de infiltración de vertederos en áreas contaminadas con metales pesados bajo la acción del peso del vertedero suprayacente, en este documento se estudia la fuerza interna de Geomembrane en los vertederos. En primer lugar, de acuerdo con el análisis de fuerza interna del modelo de Geomembrana, se obtiene la ecuación básica de Geomembrane, y la ecuación se analiza por solución numérica de diferencia finita, para analizar la fuerza interna de Geomembrane en el relleno sanitario. El método puede analizar tres estados de tensión de la interfaz de Geomembrana-arcilla en diferentes posiciones: estado elástico, estado de reblandecimiento y estado residual, lo que hace que el análisis de tensión de Geomembrana en la pendiente del vertedero sea más razonable. El análisis paramétrico muestra que cuando la pérdida de resistencia y la diferencia entre el desplazamiento residual y el desplazamiento máximo son pequeñas en la etapa de reblandecimiento, la resistencia máxima de la interfaz Geomembrana-arcilla tiene poca influencia en el esfuerzo de tensión máximo de Geomembrane, y su resistencia residual es el principal factor de control; y cuando las características de ablandamiento de la interfaz Geomembrana-arcilla son obvias, la influencia de la resistencia máxima y el desplazamiento residual es más obvia.

References

Cen, W., Du, X., Geng, L., & He, H. (2018). Seepage properties of geomembrane faced earth-rock dams under random multiple defects. Advances in Science and Technology of Water Resources, 38, 60-65.

Chand, S., Crémière, A., Lepland, A., Thorsnes, T., Brunstad, H., & Stoddart, D. (2017). Long-term fluid expulsion revealed by carbonate crusts and pockmarks connected to subsurface gas anomalies and palaeo-channels in the central North Sea. Geo-Marine Letters, 37, 215-227.

Choi, J., Maniquiz-Redillas M. C., Hong, J., & Kim, L. (2017). Selection of cost-effective Green Stormwater Infrastructure (GSI) applicable in highly impervious urban catchments. Ksce Journal of Civil Engineering, 22, 1-7.

Coronado, G. D., Rivelli, J. S., Fuoco, M. J., Vollmer, W. M., Petrik, A. F., Keast, E., Narker, S., Topalanchik, E., & Jimenez, R. (2018). Effect of Reminding Patients to Complete Fecal Immunochemical Testing: A Comparative Effectiveness Study of Automated and Live Approaches. Journal of General Internal Medicine, 33, 72-78.

Erhart, S., & Hirche, S. (2017). Internal Force Analysis and Load Distribution for Cooperative Multi-Robot Manipulation. IEEE Transactions on Robotics, 31, 1238-1243.

Fils, S. C. N., Mimba, M. E., Dzana, J. G., Etouna, J., Mounoumeck, P. V., & Hakdaoui, M. (2018). TM/ETM+/LDCM Images for Studying Land Surface Temperature (LST) Interplay with Impervious Surfaces Changes over Time Within the Douala Metropolis, Cameroon. Journal of the Indian Society of Remote Sensing, 46, 131-143.

Gholamreza, S., Mousa, A., & Meguid, M. A. (2017). Plausible failure mechanisms of wildlife-damaged earth levees: insights from centrifuge modeling and numerical analysis. Canadian Geotechnical Journal, 54, 1496–1508.

Huang, W. C., Ali, F., Zhao, J., Rhee, K., Mou, C., & Bettinger, C. J. (2017). Ultrasound-Mediated Self-Healing Hydrogels Based on Tunable Metal-Organic Bonding. Biomacromolecules, 18, 1162-1171.

Jin, W., Wu, Z., Wu, C., Cao, Z., Fan, W., & Tarolli, P. (2017). Improving impervious surface estimation: an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis. Giscience & Remote Sensing, 55, 1-21.

Kaiser, P., Schmoelz, W., Schoettle, P., Zwierzina, M., Heinrichs, C., & Attal, R. (2017). Increased internal femoral torsion can be regarded as a risk factor for patellar instability - A biomechanical study. Clinical Biomechanics, 47, 103-109.

Lin, B., Yang, X. Z., Cao, X. W., Zhang, T. Z., Wang, F. J., & Zhao, J. (2017). A novel trichosanthin fusion protein with increased cytotoxicity to tumor cells. Biotechnology Letters, 39, 1-8.

Li, B., Zhang, Y., Liu, X., Li, Z. (2017). Study on the polyurea-coat debonding failure of impervious structure in contraction joints. Journal of Hydraulic Engineering, 48, 70-77.

Li, W., Wu, C., & Choi, W. (2017). Predicting future urban impervious surface distribution using cellular automata and regression analysis. Earth Science Informatics, 11, 1-11.

Luo, Y., Nie, M., & Xiao, M. (2017). Flume-scale experiments on suffusion at bottom of cutoff wall in sandy gravel alluvium. Canadian Geotechnical Journal, 54:1716-1727.

Mcclung, T., & Ibáñez, I. (2017). Quantifying the synergistic effects of impervious surface and drought on radial tree growth. Urban Ecosystems, 21, 1-9.

Ostfeldt, C., Beguin, J. S., Pedersen, F. T., Polzik, E. S., Muller, J. H., & Appel, J. (2017). Dipole force free optical control and cooling of nanofiber trapped atoms. Optics Letters, 2017, 42:4315-4318.

Parent, J. R., & Qian, L. (2018). Estimating percent impervious cover from Landsat-based land cover with a simple and transferable regression model. International Journal of Remote Sensing, 39, 3839-3851.

Ru, X., Zhang, H., & Hui, L. (2018). Annual dynamics of impervious surfaces at city level of Pearl River Delta metropolitan. International Journal of Remote Sensing, 39, 3537-3555.

Su, H., Cui, S., Wen, Z., & Xie, W. (2019). Experimental study on distributed optical fiber heated-based seepage behavior identification in hydraulic engineering. Heat and Mass Transfer, 55:421-432.

Tang, J., Di, L., Xiao, J., Lu, D., & Zhou, Y. (2017). Impacts of land use and socioeconomic patterns on urban heat Island. International Journal of Remote Sensing, 38:3445-3465.

Wüthrich, D., Pfister, M., Nistor, I., & Schleiss, A. J. (2018). Experimental study on the hydrodynamic impact of tsunami-like waves against impervious free-standing buildings. Coastal Engineering Journal, 60, 180-199.

Xu, Z., Mountrakis, G., & Quackenbush, L. J. (2017). Impervious surface extraction in imbalanced datasets: integrating partial results and multi-temporal information in an iterative one-class classifier. International Journal of Remote Sensing, 38, 43-63.

Zhang, L., Shan, B., Zhao, Y., & Tang, H. (2018). Comprehensive Seepage Simulation of Fluid Flow in Multi-scaled Shale Gas Reservoirs. Transport in Porous Media, 121:263-288.

Zhang, L., Weng, Q., & Shao, Z. (2017). An evaluation of monthly impervious surface dynamics by fusing Landsat and MODIS time series in the Pearl River Delta, China, from 2000 to 2015. Remote Sensing of Environment, 201:99–114.

Zhang, W., Dai, B., Liu, Z., & Zhou, C. (2017). Unconfined Seepage Analysis Using Moving Kriging Mesh-Free Method with Monte Carlo Integration. Transport in Porous Media, 116, 163-180.

How to Cite

APA

Zhang, H. (2020). Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area. Earth Sciences Research Journal, 24(1), 111–118. https://doi.org/10.15446/esrj.v24n1.85231

ACM

[1]
Zhang, H. 2020. Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area. Earth Sciences Research Journal. 24, 1 (Jan. 2020), 111–118. DOI:https://doi.org/10.15446/esrj.v24n1.85231.

ACS

(1)
Zhang, H. Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area. Earth sci. res. j. 2020, 24, 111-118.

ABNT

ZHANG, H. Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area. Earth Sciences Research Journal, [S. l.], v. 24, n. 1, p. 111–118, 2020. DOI: 10.15446/esrj.v24n1.85231. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/85231. Acesso em: 28 mar. 2025.

Chicago

Zhang, Hongzhou. 2020. “Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area”. Earth Sciences Research Journal 24 (1):111-18. https://doi.org/10.15446/esrj.v24n1.85231.

Harvard

Zhang, H. (2020) “Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area”, Earth Sciences Research Journal, 24(1), pp. 111–118. doi: 10.15446/esrj.v24n1.85231.

IEEE

[1]
H. Zhang, “Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area”, Earth sci. res. j., vol. 24, no. 1, pp. 111–118, Jan. 2020.

MLA

Zhang, H. “Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area”. Earth Sciences Research Journal, vol. 24, no. 1, Jan. 2020, pp. 111-8, doi:10.15446/esrj.v24n1.85231.

Turabian

Zhang, Hongzhou. “Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area”. Earth Sciences Research Journal 24, no. 1 (January 1, 2020): 111–118. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/85231.

Vancouver

1.
Zhang H. Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area. Earth sci. res. j. [Internet]. 2020 Jan. 1 [cited 2025 Mar. 28];24(1):111-8. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/85231

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Paulina Poma, María Polanco, Karla Usca, Claudio Casella, Theofilos Toulkeridis. (2025). An Evaluation of the Public Service of the Integrated Municipal Management of Urban Solid Waste in the Galapagos and the Amazonian Region of Ecuador. Sustainability, 17(3), p.1066. https://doi.org/10.3390/su17031066.

2. Xiangguo Liu. (2021). Distribution characteristics of persistent organic pollutants in water environment based on evolutionary stabilization strategy. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06975-x.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 1
  • Scopus - Citation Indexes: 3
  • Usage
  • SciELO - Full Text Views: 161
  • SciELO - Abstract Views: 36
  • Captures
  • Mendeley - Readers: 7
  • Mendeley - Readers: 1

Article abstract page views

541

Downloads