Published
Group Velocity Measurements of Earthquake Rayleigh Wave by S Transform and Comparison with MFT
Mediciones de velocidad grupal de la onda de Rayleigh del terremoto por transformación S y comparación con MFT
DOI:
https://doi.org/10.15446/esrj.v24n1.85366Keywords:
Earthquake Rayleigh waves, group velocity, S transform, Multiple Filter Technique (en)Ondas de Terremoto Rayleigh, velocidad de grupo, Transformación S, Técnica de filtro múltiple. (es)
Downloads
Based upon the synthetic Rayleigh wave at different epicentral distances and real earthquake Rayleigh wave, S transform is used to measure their group velocities, compared with the Multiple Filter Technique (MFT) which is the most commonly used method for group-velocity measurements. When the period is greater than 15 s, especially than 40 s, S transform has higher accuracy than MFT at all epicenter distances. When the period is less than or equal to 15 s, the accuracy of S transform is lower than that of MFT at epicentral distances of 1000 km and 8000 km (especially 8000 km), and the accuracy of such two methods is similar at the other epicentral distances. On the whole, S transform is more accurate than MFT. Furthermore, MFT is dominantly dependent on the value of the Gaussian filter parameter α, but S transform is self-adaptive. Therefore, S transform is a more stable and accurate method than MFT for group velocity measurement of earthquake Rayleigh waves.
Basado en la onda de Rayleigh sintética a diferentes distancias epicentrales y la onda de Rayleigh de terremoto real, la transformación S se usa para medir las velocidades de sus grupos, en comparación con la técnica de filtro múltiple (MFT), que es el método más utilizado para las mediciones de velocidad de grupo. Cuando el período es mayor de 15 s, especialmente de 40 s, la transformación S tiene mayor precisión que la MFT en todas las distancias del epicentro. Cuando el período es menor o igual a 15 s, la precisión de la transformación S es menor que la de MFT a distancias epicentrales de 1000 km y 8000 km (especialmente 8000 km), y la precisión de estos dos métodos es similar en el otro distancias epicentrales. En general, la transformación S es más precisa que la MFT. Además, MFT depende predominantemente del valor del parámetro de filtro gaussiano α, pero la transformación S es autoadaptativa. Por lo tanto, la transformación S es un método más estable y preciso que el MFT para la medición de la velocidad grupal de las ondas de Rayleigh del terremoto.
References
Askari, R., Ferguson, R. J., & DeMeersman, K. (2011). Estimation of phase and group velocities for multi-modal ground roll using the ‘phase shift’ and ‘slant stack generalized S transform based’ methods. CREWES Research Report, 23, 1-11.
Askari, R., & Ferguson, R. J. (2012). Dispersion and the dissipative characteristic of surface waves in the generalized S-transform domain. Geophysics, 77(1), V11-V20.
Askari, R., & Slahkoohi, H. R. (2008). Ground roll attenuation using the S and x-f-k transforms. Geophysical Prospecting, 56(1), 105-114.
Cara, M. (1973). Filtering of dispersed wavetrains. Geophysical Journal of the Royal Astronomical Society, 33(1), 65-80.
Cho, K. H., Herrmann, R. B., Ammon, C. J., & Lee, K. (2007). Imaging the upper crust of the Korean Peninsula by surface-wave tomography. Bulletin of the seismological Society of America, 97(1B), 198-207.
Dziewonski, A., Bloch, S., & Landisman, M. (1969). A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America, 59(1), 427-444.
Herrmann, R. B., & Ammon, C. J. (2004). Computer Programs in Seismology, 3.30[CP/OL]. http://www.eas.slu.edu/eqc/eqccps. html
Huang, Z., Su, W., Peng, Y., Zheng, Y., & Li, H. (2003). Rayleigh wave tomography of China and adjacent regions. Journal of Geophysical Research: Solid Earth, 108(B2).
Inston, H. H., Marshall, P. D., & Blamey, C. (1971). Optimization of filter bandwidth in spectral analysis of wavetrains. Geophysical Journal of the Royal Astronomical Society, 23(2), 243-250.
Jiang, C. J., Wang, Y. X., Xiong, B., & Wang, H. Y. (2019). Measurements of surface-wave group velocity using MFT and the value of Gaussian filter parameter. Journal of Guilin University of Technology, 39(2).
Jiang, C. J., Wang, Y. X., Xiong, B., Yun, P., Xu, J. R., & Nai, Z. L. (2017). Measurement of surface wave group velocity using wavelet transform. Acta Seismologica Sinica, 39(3), 356-366.
Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108-124.
Kolínsky, P. (2004). Surface wave dispersion curves of Eurasian earthquakes: the SVAL program. Acta Geodynamica et Geomaterialia, 1(2), 165-185.
Landisman, M., Dziewonski, A., & Sato, Y. (1969). Recent improvements in the analysis of surface wave observations. Geophysical Journal of the Royal Astronomical Society, 17(4), 369-403.
Li, H., Su, W., Wang, C. Y., & Huang, Z. (2009). Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth and Planetary Science Letters, 282(1-4), 201-211.
Lu, Y., Stehly, L., & Paul, A. (2018). High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise. Geophysical Journal International, 214(2), 1136-1150.
Mechie, J., Schurr, B., Yuan, X., Schneider, F., Sippl, C., Minaev, V., Gadoev, M., Oimahmadov, I., Abdybachaev, U., Moldobekov, B., & Orunbaev, S. (2019). Observations of guided waves from the Pamir seismic zone provide additional evidence for the existence of subducted continental lower crust. Tectonophysics, 762, 1-16.
Nyman, D. C., & Landisman, M. (1977). The display-equalized filter for frequency-time analysis. Bulletin of the Seismological Society of America, 67(2), 393-404.
Parolai, S. (2009). Denoising of seismograms using the S transform. Bulletin of the Seismological Society of America, 99(1), 226-234.
Pinnegar, C. R., & Eaton, D. E. (2003). Application of the S transform to prestack noise attenuation filtering. Journal of Geophysical Research, 108(B9).
Pinnegar, C. R., & Mansinha, L. (2003a). The S-transform with windows of arbitrary and varying shape. Geophysics, 68(1), 381-385.
Pinnegar, C. R., & Mansinha, L. (2003b). The bi-Gaussain S-transform. SIAM Journal on Scientific Computing, 24(5), 1678-1692.
Pinnegar, C. R. (2006). Polarization analysis and polarization filtering of three-component signals with the time-frequency S transform. Geophysical Journal International, 165(2), 596-606.
Rindraharisaona, E. J., Tilmann, F., Yuan, X., Rümpker, G., Giese, J., Rambolamanana, G., & Barruol, G. (2017): Crustal structure of southern Madagascar from receiver functions and ambient noise correlation: Implications for crustal evolution. Journal of Geophysical Research: Solid Earth, 122(2), 1179-1197. DOI:10.1002/2016JB013565.
Ritzwoller, M. H., & Levshin, A. L. (1998). Eurasian surface wave tomography: Group velocities. Journal of Geophysical Research: Solid Earth, 103(B3), 4839-4878.
Saygin, E., & Kennett, B. L. N. (2010). Ambient seismic noise tomography of Australian continent. Tectonophysics, 481(1-4), 116-125.
Stockwell, R. G., Mansinha, L., & Lowe, R. P. (1996). Localization of the Complex Spectrum: the S Transform. IEEE Transactions on Signal Processing, 44(4), 998-1001.
Tang, Z., Mai, P. M., Chang, S. J., Zahran, H. (2018). Evidence for crustal low shear-wave speed in western Saudi Arabia from multi-scale fundamental-mode Rayleigh-wave group-velocity tomography. Earth and Planetary Science Letters, 495, 24-37.
Tselentis, G., Martakis, N., Paraskevopoulos, P., Lois, A., & Sokos, E. (2012). Strategy for automated analysis of passive microseismic data based on S-transform, Otsu’s thresholding, and higher-order statistics. Geophysics, 77(6), KS43-KS54.
Tu, R., Wang, R. J., Zhang, Y., Ge, M., & Zhang, Q. (2013). Real-time coseismic velocity and displacements retrieving and de-noising processs by high-rate GNSS. China Satellite Navigation Conference(CSNC), Proceedings, Lecture Notes in Electrical Engineering, 244, 523-537.
Zheng, C. L., & Wang, B. S. (2015). Applications of s transform in seismic data processing. Progress in Geophysics, 30(4), 1580-1591.
Zhu, J. S., Cao, J. M., Cai, X. L., Yan, Z. Q., & Cao, X. L. (2002). High resolution surface wave tomography in east Asia and west Pacific marginal seas. Chinese Journal of Geophysics, 45(5), 646-661.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2020 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.