Published

2020-01-01

Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method

Simulación de fallas complejas de la pendiente de lutita con inclinación inferior basada en el método de elementos discretos

DOI:

https://doi.org/10.15446/esrj.v24n1.85397

Keywords:

under-dip slope, deformation characteristics, on-site investigation, the discrete element method, failure mechanism (en)
pendiente bajo el agua, características de deformación, investigación en el sitio, método del elemento discreto, mecanismo de falla (es)

Downloads

Authors

  • Bin Li State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
  • Da Huang School of civil and transportation engineering, Hebei University of Technology, Tianjin 300401, China

A landslide occurred in the cut slope located in Chongqing west railway station, this slope belongs to a under-dip shale slope, which means that its bedding dip angle is larger than slope angle and it is comprised of soft rock. Some on-site investigations have been made to explore the deformation characteristics of this slope, the outcome suggested that sliding, buckling and toppling deformation existed at its different parts. To elucidate the complex failure mechanism exhibited by the under-dip slope under the long-term influence of gravity and material deterioration, the discrete element method has been employed in simulations. The simulated failure patterns have proven to be in strong agreement with the actual slope failure. This study suggests that sliding, buckling and toppling occur at different parts of the studied slope in sequence.

Se produjo un deslizamiento de tierra en la pendiente de corte ubicada en la estación de ferrocarril oeste de Chongqing. Ésta pendiente pertenece a una pendiente de lutita debajo de la inmersión, lo que significa que su ángulo de inmersión es mayor que el ángulo de inclinación y está compuesto de roca blanda. Se han realizado algunas investigaciones en el sitio para explorar las características de deformación de esta pendiente, el resultado sugirió que existía deformación por deslizamiento, pandeo y caída en sus diferentes partes. Para dilucidar el complejo mecanismo de falla exhibido por la pendiente de inmersión bajo la influencia a largo plazo de la gravedad y el deterioro del material, se ha empleado el método de elementos discretos en simulaciones. Los patrones de falla simulados han demostrado estar muy de acuerdo con la falla real de la pendiente. Este estudio sugiere que el deslizamiento, el pandeo y el vuelco ocurren en diferentes partes de la pendiente estudiada en secuencia.

References

Alejano, L. R., Gómez Márquez, I., Pons, B., García Bastante, F., & Alonso, E. (2006). Stability analysis of a potentially toppling over-tilted slope in granite. 4th Asian Rock Mechanics Symposium. Asian Society of Rock Mechanics. Singapore, 8–12. Ed. University of Singapore.

Alejano, L. R., Gomez-Marquez, I., & Martinez-Alegria, R. (2010). Analysis of a complex toppling-circular slope failure. Engineering Geology, 114, 93-104.

Alzo’ubi, A. K., Martin, C. D., & Cruden, D. M. (2010). Influence of tensile strength on toppling failure in centrifuge tests. International Journal of Rock Mechanics and Mining Sciences, 47, 974-982.

Barla, G., Borri-Brunetto, M., Devin, P., & Zaninetti, A. (1995). Validation of a distinct element model for toppling rock slopes. Proceedings of the International 7th Congress of the ISRM. Tokyo. Japan., Vol. I, pp. 417–421.

Cavers, D. S. (1981). Simple methods to analyze buckling of rock slopes. Rock Mechanics, 14, 87-104.

Choquet, P. & Tanon, D. D. B. (1986). Nomograms for the assessment of toppling failure in rock slopes. Proceedings 26th US Symposium on Rock Mechanics, Rapid City, 19-30.

Cruden, D. M. (1989). The limits to common toppling. Canadian Geotechnical Journal, 26, 737-742.

Dawson, E. M., Roth, W. H., & Drescher, A. (1999). Slope stability analysis by strength reduction. Geotechnique 49 (6), 835–840.

Goodman, R. E., & Bray, J. W. (1976). Toppling of Rock Slopes, Proceedings, American Society of Civil Engineers, Specialty Conference. Rock Engineering for Foundations and Slopes, Vol.2, Boulder, Colorado, 201-234.

Guo, A., & Lu, S. (1992). Simulation of the failure mechanism of mining slope by Discrete Element Method. Journal of Northeast University Of Technology. 13, 25-32.

Pritchard, M. A., & Savigny, K.W. (1990), Numerical modelling of toppling. Canadian Geotechnical Journal, 27, 823-834.

Pritchard, M.A. , & Savigny, K.W. (1991). The Heather Hill landslide: an example of a large scale toppling failure in a natural slope. Canadian Geotechnical Journal, 28, 410-422.

Stead, D., & Eberhardt, E. (1997). Developments in the analysis of footwall slopes in surface coal mining. Engineering Geology, 46,41-61.

Tang, S. W. Y. (1986). Field examples of toppling induced by external forces, Master of Engineering Report, University of Alberta, Edmonton, 62p.

How to Cite

APA

Li, B. and Huang, D. (2020). Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method. Earth Sciences Research Journal, 24(1), 83–89. https://doi.org/10.15446/esrj.v24n1.85397

ACM

[1]
Li, B. and Huang, D. 2020. Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method. Earth Sciences Research Journal. 24, 1 (Jan. 2020), 83–89. DOI:https://doi.org/10.15446/esrj.v24n1.85397.

ACS

(1)
Li, B.; Huang, D. Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method. Earth sci. res. j. 2020, 24, 83-89.

ABNT

LI, B.; HUANG, D. Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method. Earth Sciences Research Journal, [S. l.], v. 24, n. 1, p. 83–89, 2020. DOI: 10.15446/esrj.v24n1.85397. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/85397. Acesso em: 28 mar. 2025.

Chicago

Li, Bin, and Da Huang. 2020. “Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method”. Earth Sciences Research Journal 24 (1):83-89. https://doi.org/10.15446/esrj.v24n1.85397.

Harvard

Li, B. and Huang, D. (2020) “Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method”, Earth Sciences Research Journal, 24(1), pp. 83–89. doi: 10.15446/esrj.v24n1.85397.

IEEE

[1]
B. Li and D. Huang, “Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method”, Earth sci. res. j., vol. 24, no. 1, pp. 83–89, Jan. 2020.

MLA

Li, B., and D. Huang. “Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method”. Earth Sciences Research Journal, vol. 24, no. 1, Jan. 2020, pp. 83-89, doi:10.15446/esrj.v24n1.85397.

Turabian

Li, Bin, and Da Huang. “Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method”. Earth Sciences Research Journal 24, no. 1 (January 1, 2020): 83–89. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/85397.

Vancouver

1.
Li B, Huang D. Complex Failure Simulation of Underinclined Shale Slope Based on Discrete Element Method. Earth sci. res. j. [Internet]. 2020 Jan. 1 [cited 2025 Mar. 28];24(1):83-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/85397

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Ruitao Zhang, Jiahao Li. (2024). Buckling failure analysis and numerical manifold method simulation for high and steep slope: A case study. Geohazard Mechanics, 2(2), p.143. https://doi.org/10.1016/j.ghm.2024.04.001.

2. Yiqing Sun, Deying Li, Fasheng Miao, Xiangjie She, Shuo Yang, Xiaoxu Xie. (2022). Effects of Weak Bedding Plane, Fault, and Extreme Rainfall on the Landslide Event of a High Cut-Slope. Sensors, 22(18), p.6790. https://doi.org/10.3390/s22186790.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 1
  • Scopus - Citation Indexes: 1
  • Usage
  • SciELO - Full Text Views: 180
  • SciELO - Abstract Views: 24
  • Captures
  • Mendeley - Readers: 1

Article abstract page views

461

Downloads