Published

2023-05-23

Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining

Acercamiento difuso para la evaluación del riesgo de seguridad en minas de rocas de dimensión

DOI:

https://doi.org/10.15446/esrj.v27n1.85482

Keywords:

Dimension stone, safety risk assessment, RPN, fuzzy set theory (en)
Minas de rocas de dimensión, evaluación del riesgo de seguridad, valor de prioridad del riesgo (es)

Downloads

Authors

  • Mohammad Javad Rahimdel Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran

Mining activities are liable to injuries and different types of diseases. The occurrence of an accident threatens safety in dimension stone mines. Therefore, the safety risk assessment in such mines is an important issue that needs special consideration. In this paper, the safety risk of incidents in dimension stone mines in Iran is evaluated using the fuzzy inference system. The fuzzy analytical hierarchy process is used to identify the importance degree of each incidence and then, the overall risk priority number is calculated based on the fuzzy inference process. The results of this study show that vehicle traffic and wire rupture are the most hazardous incidents.

Las actividades mineras son responsables de lesiones y diferentes tipos de enfermedades. La ocurrencia de un accidente amenaza la seguridad de la minería de rocas de dimensión. Además, la evaluación de riesgos de seguridad en estas minas es un tema importante que necesita consideración especial. Este artículo evalúa el riesgo de seguridad en incidentes de minería de rocas de dimensión en Irán. El proceso analítico jerárquico difuso se usa en este trabajo para identificar el grado de importancia de cada incidente y, luego, se calculó el valor de prioridad de riesgo general con base en la inferencia difusa del proceso. Los resultados de este estudio muestran que el tráfico de vehículos y la ruptura de cables son los incidentes más peligrosos.

References

Alizadeh, S., Rad, M. M. S., & Bazzazi, A. A. (2016). Alunite processing method selection using the AHP and TOPSIS approaches under fuzzy environment. International Journal of Mining Science and Technology, 26(6), 1017-1023. https://doi.org/10.1016/j.ijmst.2016.09.009 DOI: https://doi.org/10.1016/j.ijmst.2016.09.009

Bae, H., Simmons, D. R., & Polmear, M. (2021). Promoting the Quarry Workers' Hazard Identification Through Formal and Informal Safety Training. Safety and Health at Work, 12(3), 317-323. https://doi.org/10.1016/j.shaw.2021.02.003 DOI: https://doi.org/10.1016/j.shaw.2021.02.003

Bajić, S., Bajić, D., Gluščević, B., & Ristić, Vakanjac, V. (2020). Application of fuzzy analytic hierarchy process to underground mining method selection. Symmetry, 12(2), 192. https://doi.org/10.3390/sym12020192 DOI: https://doi.org/10.3390/sym12020192

Bobzin, K., Heinemann, H., & Dokhanchi, S. R. (2022). Development of an Expert System for Prediction of Deposition Efficiency in Plasma Spraying. Journal of Thermal Spray Technology, 1-14. https://doi.org/10.1007/s11666-022-01494-x DOI: https://doi.org/10.1007/s11666-023-01602-5

Boender C. G. E., De Graan, J. G., & Lootsma, F. A, (1989). Multi-criteria decision analysis with fuzzy pairwise comparisons. Fuzzy sets and Systems, 29(2), 133-143. https://doi.org/10.1016/0165-0114(89)90187-5 DOI: https://doi.org/10.1016/0165-0114(89)90187-5

Bögöly, G., & Füzesi, F. (2021). Comparison of the probabilistic and deterministic slope stability analysis of a dolomite quarry in Hungary. In the Evolution of Geotech-25 Years of Innovation (pp. 180-186). CRC Press. DOI: 10.1201/9781003188339-24. DOI: https://doi.org/10.1201/9781003188339-24

Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy sets and systems, 17(3), 233-247. DOI: https://doi.org/10.1016/0165-0114(85)90090-9

Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of operational research, 95(3), 649-655. https://doi.org/10.1016/0165-0114(85)90090-9 DOI: https://doi.org/10.1016/0377-2217(95)00300-2

Chi, M., Zhang, D., Fan, G., Zhang, W., & Liu, H. (2019). Prediction of water resource carrying capacity by the analytic hierarchy process-fuzzy discrimination method in a mining area. Ecological Indicators, 96, 647-655. https://doi.org/10.1016/j.ecolind.2018.09.021 DOI: https://doi.org/10.1016/j.ecolind.2018.09.021

Csutora, R., & Buckley, J. J. (2001). Fuzzy hierarchical analysis: the Lambda-Max method. Fuzzy sets and Systems, 120(2), 181-195. https://doi.org/10.1016/S0165-0114(99)00155-4 DOI: https://doi.org/10.1016/S0165-0114(99)00155-4

DNRM. (2016). Queensland Mines and Quarries Safety Performance and Health Report, department of natural resources and mines of Australia. www.dnrm.qld.gov.au.

DNRM. (2017). Queensland mines and quarries safety performance and health report, Department of Natural Resources and Mines, State of Queensland. www.dnrm.qld.gov.au.

Dogan, O. (2021). Process mining technology selection with spherical fuzzy AHP and sensitivity analysis. Expert Systems with Applications, 178, 114999. https://doi.org/10.1016/j.eswa.2021.114999 DOI: https://doi.org/10.1016/j.eswa.2021.114999

Ersoy, M. (2013). The role of occupational safety measures on reducing accidents in marble quarries of Iscehisar region. Safety science, 57, 293-302. https://doi.org/10.1016/j.ssci.2013.03.005 DOI: https://doi.org/10.1016/j.ssci.2013.03.005

Ersoy, M., & Yesilkaya, L. (2016). Comparison of the occupational safety applications in marble quarries of Carrara (Italy) and Iscehisar (Turkey) by using Elmeri method. International journal of injury control and safety promotion, 23(1), 29-63. DOI: 10.1080/17457300.2014.945464. DOI: https://doi.org/10.1080/17457300.2014.945464

Esmaeilzadeh, A., Shaffiee Haghshenas, S., Mikaeil, R., Guido, G., Shirani Faradonbeh, R., Abbasi Azghan, R., & Taghizadeh, S. (2022). Risk Assessment in Quarries using Failure Modes and Effects Analysis Method (Case study: West-Azerbaijan Mines). Journal of Mining and Environment, 13(3), 715-725. https://doi.org/10.22044/jme.2022.12117.2209

Gumus, A, Akkyun, O. (2006). An investigation on industrial accidents in marble quarrying. In: Mersem 2006 The 5th Marble and Natural Stone Symposium of Turkey, May 2–3, 103–107.

Hakan, E., & Kanik, D. (2012). Multicriteria decision-making analysis based methodology for predicting carbonate rocks' uniaxial compressive strength. Earth Sciences Research Journal, 16(1), 65-74.

Johanyák, Z. C., Tikk, D., Kovács, S., & Wong, K. W. (2006). Fuzzy rule interpolation Matlab toolbox-FRI toolbox. In Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 16–21 July 2006; 351–357. DOI: 10.1109/FUZZY.2006.1681736. DOI: https://doi.org/10.1109/FUZZY.2006.1681736

Kalogirou, S. A. (2009). Chapter eleven-designing and modeling solar energy systems. Solar energy engineering. Academic Press, Boston, 553-664. DOI: 10.1016/B978-0-12-397270-5.00011-X. DOI: https://doi.org/10.1016/B978-0-12-374501-9.00011-X

Karimnia, H., & Bagloo H. (2015). Optimum mining method selection using fuzzy analytical hierarchy process–Qapiliq salt mine, Iran. International Journal of Mining Science and Technology, 25(2), 225-230. https://doi.org/10.1016/j.ijmst.2015.02.010 DOI: https://doi.org/10.1016/j.ijmst.2015.02.010

Khalifa, S., Saadan, K., & Norwawi, N. (2015). Risk Assessment of Mined Areas Using Fuzzy Inference. International Journal of Artificial Intellegence and Application, 6(2), 37-51. DOI: 10.5121/ijaia.2015.6203. DOI: https://doi.org/10.5121/ijaia.2015.6203

Li, M., Wang, H., Wang, D., Shao, Z., & He, S. (2020). Risk assessment of gas explosion in coal mines based on fuzzy AHP and bayesian network. Process Safety and Environmental Protection, 135, 207-218. https://doi.org/10.1016/j.psep.2020.01.003 DOI: https://doi.org/10.1016/j.psep.2020.01.003

Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2 DOI: https://doi.org/10.1016/S0020-7373(75)80002-2

Marras, G., & Careddu, N. (2018). Overview: Health and Safety in the Italian dimension stone quarrying industry. Geoingegneria Ambientale e Mineraria, 1, 34-40. DOI: 10.19199/2021.1.1121-9041.034.

Melodi, M. M., Adeyemo, A., Oluwafemi, V. I. (2020). Risk Management Assessment of Production in Granite Stone: A Case Study of Quarries in Ondo, Ogun and Oyo States, Nigeria. ABUAD Journal of Engineering Research and Development (AJERD), 3(1), 1-7.

Modak, M., Pathak, K., & Ghosh, K. K. (2017). Performance evaluation of outsourcing decision using a BSC and Fuzzy AHP approach: A case of the Indian coal mining organization. Resources Policy, 52, 181-191. https://doi.org/10.1016/j.resourpol.2017.03.002 DOI: https://doi.org/10.1016/j.resourpol.2017.03.002

Nakhaei Khalilabad, Z., Khalo Kakaie, R., & Basirnezhad, M. (2018). Application of Fuzzy Fault Tree Analysis on Risk Assessment of Wire Cutting Machine in Kowsar Stone Mines of Isfahan. Journal of Mining Engineering, 13(39), 43-53. DOI: 10.22034/ijme.2018.32827.

Patyk, M., & Bodziony, P. (2022). Application of the Analytical Hierarchy Process to Select the Most Appropriate Mining Equipment for the Exploitation of Secondary Deposits. Energies, 15(16), 5979. https://doi.org/10.3390/en15165979 DOI: https://doi.org/10.3390/en15165979

Qureshi, M. E., & Harrison, S. R. (2017). Comparing Riparian revegetation policy options using the analytic hierarchy process. In Using multi-criteria decision analysis in natural resource management (pp. 57-76). Routledge.

Rahim, R. (2017). Comparative analysis of membership function on Mamdani fuzzy inference system for decision making. In Journal of Physics: Conference Series, 930(1), p. 012029). IOP Publishing. DOI: 10.1088/1742-6596/930/1/012029. DOI: https://doi.org/10.1088/1742-6596/930/1/012029

Rahimdel, M. J., & Ghodrati, B. (2021). Risk prioritization for failure modes in mining railcars. Sustainability, 13(11), 6195. https://doi.org/10.3390/su13116195 DOI: https://doi.org/10.3390/su13116195

Rahimdel, M. J., Aryafar, A., & Vaziri, S. (2022). Fuzzy FMEA for the safety risk analysis of underground coal mining (a case study in Iran). Mining Technology, 131(2), 104-114. DOI: 10.1080/25726668.2022.2051273

Saaty, T. L. (1980). The analytic hierarchy process. McGraw Hill, New York. DOI: https://doi.org/10.21236/ADA214804

Sanmiquel, L., Rossell, J. M., & Vintró, C. (2015). Study of Spanish mining accidents using data mining techniques. Safety science, 75, 49-55. https://doi.org/10.1016/j.ssci.2015.01.016 DOI: https://doi.org/10.1016/j.ssci.2015.01.016

Sanmiquel, L., Rossell, J. M., Vintró, C., & Freijo, M. (2014). Influence of occupational safety management on the incidence rate of occupational accidents in the Spanish industrial and ornamental stone mining. Work, 49(2), 307-314. DOI: 10.3233/WOR-141854.

Sanmiquel, L., Rossell, J.M., Vintró, C., Freijo, M. (2014). Influence of occupational safety management on the incidence rate of occupational accidents in the Spanish industrial and ornamental stone mining. Work, 49(2), 307-314. DOI: 10.3233/WOR-141854. DOI: https://doi.org/10.3233/WOR-141854

Statistical Center of Iran, SCI (2020). Survey Results of the Iran’s Active Mines in 2019. https://www.amar.org.ir/english.

Sugeno, M., & Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy sets and systems, 28(1), 15-33. https://doi.org/10.1016/0165-0114(88)90113-3 DOI: https://doi.org/10.1016/0165-0114(88)90113-3

SWA. (2013). Safe Work Australia annual report 2012-13. Canberra, Australia: Safe Work Australia.

Tsai, H. C., Lee, A. S., Lee, H. N., & Hooper, Jr. H. H. (2022). Use of Similarity of Triangular Fuzzy Numbers and a Derivation Calculation Formula in Assessment of Mortise-Tenon Joints Applied in the Joinery Category of Regional Taiwan Skills Competitions. Sustainability, 14(14), 8608. https://doi.org/10.3390/su14148608 DOI: https://doi.org/10.3390/su14148608

Van Laarhoven, P. J., & Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory. Fuzzy sets and Systems, 11(1-3), 229-241. https://doi.org/10.1016/S0165-0114(83)80082-7 DOI: https://doi.org/10.1016/S0165-0114(83)80082-7

Wang, W. J., & Luoh, L. (2000). Simple computation for the defuzzifications of center of sum and center of gravity. Journal of Intelligent & Fuzzy Systems, 9(1-2), 53-59.

Wang, Y. M., Yang, J. B., & Xu, D. L. (2005). A two-stage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy sets and systems, 152(3), 475-498. https://doi.org/10.1016/j.fss.2004.10.020 DOI: https://doi.org/10.1016/j.fss.2004.10.020

Xu, R. (2000). Fuzzy least-squares priority method in the analytic hierarchy process. Fuzzy sets and systems, 112(3), 395-404. https://doi.org/10.1016/S0165-0114(97)00376-X DOI: https://doi.org/10.1016/S0165-0114(97)00376-X

Yu, X., Mu, C., & Zhang, D. (2020). Assessment of land reclamation benefits in mining areas using fuzzy comprehensive evaluation. Sustainability, 12(5), 2015. https://doi.org/10.3390/su12052015 DOI: https://doi.org/10.3390/su12052015

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Zhang, Z., & Chu, X. (2011). Risk prioritization in failure mode and effects analysis under uncertainty. Expert Systems with Applications, 38(1), 206-214. https://doi.org/10.1016/j.eswa.2010.06.046 DOI: https://doi.org/10.1016/j.eswa.2010.06.046

How to Cite

APA

Rahimdel, M. J. (2023). Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining. Earth Sciences Research Journal, 27(1), 37–45. https://doi.org/10.15446/esrj.v27n1.85482

ACM

[1]
Rahimdel, M.J. 2023. Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining. Earth Sciences Research Journal. 27, 1 (May 2023), 37–45. DOI:https://doi.org/10.15446/esrj.v27n1.85482.

ACS

(1)
Rahimdel, M. J. Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining. Earth sci. res. j. 2023, 27, 37-45.

ABNT

RAHIMDEL, M. J. Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining. Earth Sciences Research Journal, [S. l.], v. 27, n. 1, p. 37–45, 2023. DOI: 10.15446/esrj.v27n1.85482. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/85482. Acesso em: 22 apr. 2025.

Chicago

Rahimdel, Mohammad Javad. 2023. “Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining”. Earth Sciences Research Journal 27 (1):37-45. https://doi.org/10.15446/esrj.v27n1.85482.

Harvard

Rahimdel, M. J. (2023) “Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining”, Earth Sciences Research Journal, 27(1), pp. 37–45. doi: 10.15446/esrj.v27n1.85482.

IEEE

[1]
M. J. Rahimdel, “Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining”, Earth sci. res. j., vol. 27, no. 1, pp. 37–45, May 2023.

MLA

Rahimdel, M. J. “Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining”. Earth Sciences Research Journal, vol. 27, no. 1, May 2023, pp. 37-45, doi:10.15446/esrj.v27n1.85482.

Turabian

Rahimdel, Mohammad Javad. “Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining”. Earth Sciences Research Journal 27, no. 1 (May 23, 2023): 37–45. Accessed April 22, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/85482.

Vancouver

1.
Rahimdel MJ. Fuzzy Approach for the Safety Risk Assessment in Dimension Stone Mining. Earth sci. res. j. [Internet]. 2023 May 23 [cited 2025 Apr. 22];27(1):37-45. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/85482

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Mojtaba Yari, Saeed Jamali, Gamil M. S. Abdullah, Mahmood Ahmad, Muhammad Usman Badshah, Taoufik Najeh. (2024). Development a risk assessment method for dimensional stone quarries. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-64276-1.

2. Chris Mitrakas, Alexandros Xanthopoulos, Dimitrios Koulouriotis. (2025). Techniques and Models for Addressing Occupational Risk Using Fuzzy Logic, Neural Networks, Machine Learning, and Genetic Algorithms: A Review and Meta-Analysis. Applied Sciences, 15(4), p.1909. https://doi.org/10.3390/app15041909.

Dimensions

PlumX

Article abstract page views

249

Downloads

Download data is not yet available.