Published

2020-01-01

Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points

Algoritmo de asignación óptima de puntos de muestreo de monitoreo de detección remota geológica y ecológica de alta resolución

DOI:

https://doi.org/10.15446/esrj.v24n1.85531

Keywords:

Geological ecology, High resolution remote sensing, Sampling point, BING algorithm, Selective search algorithm (en)
Ecología geológica, Teledetección de alta resolución, Punto de muestreo, Algoritmo BING, Algoritmo de búsqueda selectiva (es)

Downloads

Authors

  • Taifu Bi Key Laboratory of Regional Environment and Eco-restoration, Shenyang University, Shenyang Liaoning 110044, China

Abstract: The purpose of this study is to solve the problem of unsatisfactory image representation of monitoring sampling points in high-resolution remote sensing due to the complexity of geological ecology. Firstly, three algorithms used in remote sensing technology were introduced, that is, extraction algorithm of monitoring sampling point (selective search algorithm), discriminant algorithm (support vector machine) and BING algorithm. Then, the BING algorithm was improved. Finally, the superiority of the improved BING algorithm was verified through experimental data set. The results showed that selective search algorithm could generate more candidate windows in remote sensing image and had better adaptability. The improved algorithm had higher quality of candidate windows extracted from remote sensing images. Although the IBING algorithm could greatly improve the extraction speed of remote sensing, the detection time of each image became larger. Such testing times were still acceptable. Therefore, in this research, the allocation algorithm of geological and ecological high-resolution remote sensing monitoring sampling points was optimized, which had a good guiding significance for the application of remote sensing technology in geological and ecological research.

Resumen: El propósito de este estudio es resolver el problema de la representación de imagen insatisfactoria de los puntos de muestreo de monitoreo en la teledetección de alta resolución debido a la complejidad de la ecología geológica. En primer lugar, se introdujeron tres algoritmos utilizados en la tecnología de detección remota, es decir, el algoritmo de extracción del punto de muestreo de monitoreo (algoritmo de búsqueda selectiva), el algoritmo discriminante (máquina de vectores de soporte) y el algoritmo BING. Luego, se mejoró el algoritmo BING. Finalmente, la superioridad del algoritmo BING mejorado se verificó mediante un conjunto de datos experimentales. Los resultados mostraron que el algoritmo de búsqueda selectiva podía generar más ventanas candidatas en la imagen de teledetección y tenía una mejor adaptabilidad. El algoritmo mejorado tenía mayor calidad de ventanas candidatas extraídas de imágenes de teledetección. Aunque el algoritmo IBING podría mejorar en gran medida la velocidad de extracción de la teledetección, el tiempo de detección de cada imagen se hizo mayor. Tales tiempos de prueba aún eran aceptables. Por lo tanto, en esta investigación, se optimizó el algoritmo de asignación de puntos de muestreo de monitoreo de detección remota geológica y ecológica de alta resolución, que tenía una buena importancia orientadora para la aplicación de la tecnología de detección remota en la investigación geológica y ecológica.

References

Ellis, C. J., & Coppins, B. J. (2017). Taxonomic survey compared to ecological sampling: are the results consistent for woodland epiphytes. Lichenologist, 49(2), 141-155.

Fan, L. M., Ma, X., Li, Y., Li, C., Yao, C., Xiang, M., Wu, B., & Peng, J. (2017). Geological disasters and control technology in high intensity mining area of western China. Journal of China Coal Society, 42(2), 276-285.

Gao, B., Lu, A., Pan, Y., Huo, L., Yunbing, G., Li, X., Li, S., & Chen, Z. (2017). Additional sampling layout optimization method for environmental quality grade classifications of farmland soil. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 7(99), 1-9.

Gorji, T., Sertel, E., & Tanik, A. (2017). Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological Indicators, 74:384-391.

Lengyel, S., Kosztyi, B., Schmeller, D. S., Henry, P. Y., Kotarac, M., Lin, Y. P., & Henle, K. Evaluating and benchmarking biodiversity monitoring: Metadata-based indicators for sampling design, sampling effort and data analysis. Ecological Indicators, 85, 624-633.

Silva, A. M., Abessa, D. P., Zaitune, P. A., Bohrer-Morel, M. B. (2017). Ecological risk assessment of a subtropical river influenced by discharges of residues from water and sewage treatment plants. Management of Environmental Quality An International Journal, 28(2), 156-174.

Sürme, Y., Bişgin, A. T., Uçan, M., & Narin, I. (2018). Cloud point extraction and flame atomic absorption spectrometric determination of cd(II) in industrial and environmental samples. Journal of Analytical Chemistry, 73(2), 140-144.

Yavad, K., & Congalton, R. (2017). Issues with large area thematic accuracy assessment for mapping cropland extent: a tale of three continents. Remote Sensing, 10(2), 53-57.

How to Cite

APA

Bi, T. (2020). Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points. Earth Sciences Research Journal, 24(1), 105–110. https://doi.org/10.15446/esrj.v24n1.85531

ACM

[1]
Bi, T. 2020. Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points. Earth Sciences Research Journal. 24, 1 (Jan. 2020), 105–110. DOI:https://doi.org/10.15446/esrj.v24n1.85531.

ACS

(1)
Bi, T. Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points. Earth sci. res. j. 2020, 24, 105-110.

ABNT

BI, T. Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points. Earth Sciences Research Journal, [S. l.], v. 24, n. 1, p. 105–110, 2020. DOI: 10.15446/esrj.v24n1.85531. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/85531. Acesso em: 28 mar. 2025.

Chicago

Bi, Taifu. 2020. “Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points”. Earth Sciences Research Journal 24 (1):105-10. https://doi.org/10.15446/esrj.v24n1.85531.

Harvard

Bi, T. (2020) “Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points”, Earth Sciences Research Journal, 24(1), pp. 105–110. doi: 10.15446/esrj.v24n1.85531.

IEEE

[1]
T. Bi, “Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points”, Earth sci. res. j., vol. 24, no. 1, pp. 105–110, Jan. 2020.

MLA

Bi, T. “Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points”. Earth Sciences Research Journal, vol. 24, no. 1, Jan. 2020, pp. 105-10, doi:10.15446/esrj.v24n1.85531.

Turabian

Bi, Taifu. “Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points”. Earth Sciences Research Journal 24, no. 1 (January 1, 2020): 105–110. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/85531.

Vancouver

1.
Bi T. Optimal Allocation Algorithm of Geological and Ecological High-resolution Remote Sensing Monitoring Sampling Points. Earth sci. res. j. [Internet]. 2020 Jan. 1 [cited 2025 Mar. 28];24(1):105-10. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/85531

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Liang Song, Dongyan Lian. (2021). The stability of marine ecological environment under the optimal control of switching forward system. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06994-8.

2. Lan Xu. (2021). Quantitative evaluation method for coordinated development of ecological economy in mountainous areas based on grey clustering analysis. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06967-x.

3. Yuguang Wang. (2021). Evaluation of lake wetland ecotourism resources based on remote sensing ecological index. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06892-z.

4. Hui Wang, Yu Shang, Yue Lv. (2021). Measurement and influencing factor analysis of TFEE in middle reaches of the Yellow River. Arabian Journal of Geosciences, 14(13) https://doi.org/10.1007/s12517-021-07571-9.

5. Jing Rao. (2021). Coordination degree of marine biological ecological resources based on multi-source monitoring data. Arabian Journal of Geosciences, 14(7) https://doi.org/10.1007/s12517-021-06993-9.

Dimensions

PlumX

  • Citations
  • CrossRef - Citation Indexes: 5
  • Scopus - Citation Indexes: 8
  • Usage
  • SciELO - Full Text Views: 136
  • SciELO - Abstract Views: 41
  • Captures
  • Mendeley - Readers: 3

Article abstract page views

440

Downloads