Published

2021-07-19

Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data

Evolución termal de la formación Los Cuervos, en el área sur de la subcuenca Cesar, con base en datos geoquímicos y petrofísicos

DOI:

https://doi.org/10.15446/esrj.v25n2.86025

Keywords:

Cesar-Rancheria Basin, Cesar Sub-Basin, Los Cuervos Formation, Source Rock, Geochemical Modeling, Porosity-Depth Relation. (en)
Cuenca Cesar-Rancheria, Subcuenca Cesar, Formacion Los Cuervos, Roca generadora, Modelamiento geoquímico, relación porosidad-profundidad. (es)

Downloads

Authors

The tectonic complexity to which the post-Cretaceous Cesar-Ranchería basin has been subjected has generated alterations in the evolution of its oil system, evidence of this is the lack of stratigraphic record in the Cesar sub-basin belonging to ages ranging from the Eocene to the Early Miocene. These units that are no longer present could have been deposited and eroded during this period of time, leaving their mark on the closest overlying units. Previously mentioned hypothesis oriented this research to study how the basin filling was in the time range from the Eocene to the early Miocene based on both organic (24 Tmax and 14 %Ro data) and inorganic (514 data of porosity) paleo-geothermometer data of Paleocene age formations present in two new wells ANH-LA LOMA-2 and ANH-CR-LOS CEREZOS-1X. In addition to the data provided by the wells drilled for this study, 31 published Tmax and 13 %Ro data from Los Cuervos Formation in the Calenturitas and La Jagua Mines were used. The results obtained indicate that the continuous deposition of sedimentary units did occur from the Paleocene to the middle Eocene and it is expected that the Sedimentitas del Eoceno Formation has reached a thickness between 2.5 to 3.5km with characteristics of quartz sandstones (density and compaction). This thickness of rock began to be eroded in the late Eocene to the Miocene according to recent thermo-chronological studies. The evidence obtained allow to improve the thermal evolution models of the oil system, to establish when the greatest advances were made in the transformation ratios and to estimate how the oldest source rocks of the Cesar sub-basin are currently in the studied area.

La complejidad tectónica a la cual ha sido sometida la cuenca Cesar-Ranchería posterior al Cretácico ha generado alteraciones en la evolución de su sistema petrolífero, evidencia de esto es la falta de registro estratigráfico en la subcuenca Cesar perteneciente a edades que van del Eoceno hasta el Mioceno temprano. Estas unidades que ya no están presentes pudieron haber sido depositadas y erosionadas durante este espacio de tiempo, dejando su marca en las unidades suprayacentes más próximas. Esta hipótesis orientó esta investigación a estudiar cómo fue el llenado de cuenca en el lapso de tiempo del Eoceno hasta el Mioceno temprano basado en datos de paleo-geotermómetros, tanto orgánicos (24 datos de Tmax y 14 de %Ro) como inorgánicos (514 datos de porosidad), de formaciones de edad Paleoceno presentes en dos pozos nuevos ANH-LA LOMA-2 y ANH-CR-LOS CEREZOS-1X. Además de los datos aportados por los pozos perforados para este estudio, se utilizaron 31 datos de Tmax y 13 de %Ro publicados de la formación Los Cuervos en las minas Calenturitas y La Jagua. Los resultados obtenidos indican que sí ocurrió la depositación continua de unidades sedimentarias desde el Paleoceno hasta el Eoceno medio y se espera que la Formación Sedimentitas del Eoceno haya alcanzado un espesor de entre 2.5 – 3.5 km con características de arenitas de cuarzo (densidad y compactación). Dicho espesor de roca comenzó a ser erodado en el Eoceno tardío hasta el Mioceno de acuerdo con estudios recientes de termocronología. Las evidencias obtenidas permiten mejorar los modelos de evolución termal del sistema petrolífero, establecer cuando se produjeron los mayores avances en las tasas de transformación y estimar cómo se encuentran actualmente las unidades generadoras más antiguas de la subcuenca Cesar en la zona estudiada.

References

Aguilera, R., Sotelo, V., Burgos, C., Arce, C., Gómez, C., Mojica, J. and Osorno, J. (2010). Organic Geochemistry Atlas of Colombia. Second Edition. Earth Sciences Research Journal, 14(Special), 164. https://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/ATLAS_GEOQUIMICO/Atlas_Geoquimico_2010.pdf

American Petroleum Institute (1998). API RP 40. Recommended Practices for Core Analysis. Second edition. American Petroleum Institute, Washington DC. http://w3.energistics.org/RP40/rp40.pdf

ASTM D7708-14. (2014). Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks, ASTM International, West Conshohocken, PA. www.astm.org

Ayala, R. (2009). Análisis Tectonoestratigráfico y de Procedencia en la Subcuenca de Cesar: Relación con los Sistemas Petroleros. MSc. Thesis, Universidad Simón Bolívar, Baruta, Venezuela. http://www.cgares.org/Directorio/Archivos/6276_8%20tesis%20final_cayala.pdf.

Avendaño-Sánchez, G. M. (2019). Source Rocks and Thermal Maturation in the Southeastern area of the Cesar Sub-Basin, Colombia. MSc. Thesis, School of Geology, Universidad Industrial de Santander, Bucaramanga, Colombia. http://tangara.uis.edu.co/biblioweb/pags/cat/popup/pa_detalle_matbib.jsp?parametros=188439%7C %7C1%7C1

Barker, C. (1974). Pyrolysis Techniques for source-Rock Evaluation. AAPG Bulletin, 58(11), 2349–2361. https://doi.org/10.1306/83D91BAF-16C7-11D7-8645000102C1865D

Barrero, D., Pardo, A., Vargas, C. A. & Martínez, J. (2007). Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a new proposal. ANH. Bogotá. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Cuencas-sedimentarias/Documents/colombian_sedimentary_basins.pdf

Bayona, G., Lamus-Ochoa, F., Cardona, A., Jaramillo, C., Montes, C. & Tchegliakova, N. (2007). Procesos orogénicos del Paleoceno para la Cuenca Ranchería (Guajira, Colombia) y áreas adyacentes definidos por análisis de procedencia. Geología Colombiana, 32, 21–46. Retrieved from https://revistas.unal.edu.co/index.php/geocol/article/view/32021/32046

Behar, F., Beaumont, V. & De Penteado, B. (2001). Rock-Eval 6 Technology: Performances and Developments. Oil Gas Sci. Technol., 56, 111–134. https://doi.org/10.2516/ogst:2001013

Bermúdez, M. A. (2009). Cenozoic exhumation patterns across the Venezuelan Andes: insights from fission-track thermochronology. Ph.D. Thesis, School of Geosciences, Université Joseph Fourier-Grenoble I, Grenoble, France. https://tel.archives-ouvertes.fr/tel-00450838

Bjørlykke, K. (2014). Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301,1-14. https://www.sciencedirect.com/science/article/abs/pii/S0037073813002200?via%3Dihub

Cardona, A., Valencia, V. A., Bayona, G., Duque, J., Ducea, M., Gehrels, G., Jaramillo, C., Montes, C., Ojeda, G. & Ruiz, J. (2011). Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta massif and Rancheria Basin, northern Colombia. Terra Nova, 23, 26–34. https://doi.org/10.1111/j.1365-3121.2010.00979.x

Carr, A. D. (2000). Suppression and retardation of vitrinite reflectance, part 1. Journal of Petroleum Geology, 23(3), 313–343. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1747-5457.2000.tb01022.x

DiPrimio, R. & Horsfield, B. (2006). From petroleum-type organofacies to hydrocarbon phase prediction. AAPG Bulletin, 90, 7, 1031-1058. https://doi.org/10.1306/02140605129

García, M., Mier, R., Arias, A., Cortés, Y., Moreno, M., Salazar, O. & Jiménez, M. (2008). Prospectividad de la Cuenca Cesar-Ranchería. Grupo de Investigación en Geología de Hidrocarburos y Carbones, Universidad Industrial de Santander (UIS). Bucaramanga. http://oilproduction.net/files/cuencas%20petroleras%20de%20colombia-2009.pdf

Guo, Q., Littke, R. & Zieger, L. (2018). Petrographical and geochemical characterization of sub-bituminous coals from mines in the Cesar-Ranchería Basin, Colombia. International Journal of Coal Geology, 191, 66–79. https://doi.org/10.1016/j.coal.2018.03.008

Hernández, M. (2003). Memoria Explicativa Geología Plancha 48, Jagua de Ibirico. Escala 1:100.000, INGEOMINAS. Bogotá. http://recordcenter.sgc.gov.co/B4/13010010020444/documento/PDF/0101204441102000.pdf

Hernández, O. & Jaramillo, J. M. (2008). Reconstrucción de la historia termal en los sectores de Luruaco y Cerro Cansona-cuenca del Sinú-San Jacinto y el piedemonte occidental de la Serranía del Perijá entre Codazzi y la Jagua de Ibirico-cuenca Cesar-Ranchería. Agencia Nacional de Hidrocarburos: Bogotá, Colombia, 58 P. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Tesis/Reconstruccion_historia_termal_sector_de_Sinu_San_Jacinto_2009.pdf

Kellogg, J. N. (1984). Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geological Society of America, Memoir 162, 239–262. https://doi.org/10.1130/MEM162-p239

Kim, Y., Lee, C. & Lee, E. Y. (2018). Numerical analysis of sedimentary compaction: Implications for porosity and layer thickness variation. Journal of the Geological Society of Korea. 54, 631-640. http://dx.doi.org/10.14770/jgsk.2018.54.6.631

Lee, E. Y., Novotny, J. & Wagreich, M. (2019). Subsidence Analysis and Visualization - For Sedimentary Basin Analysis and Modelling. Springer, Cham, 56 p. https://www.springerprofessional.de/subsidence-analysis-and-visualization/15849410

Martínez de Vivas, M., Calderón, W., Zamora, W., Rodríguez, I. & López, E. (2012). Modelamientos Numéricos 3D de Sistemas Petrolíferos en la Cuenca Cesar–Ranchería: Nuevas Ideas Acerca de su Potencial Petrolífero. In: ACGGP (p. 9). https://www.earthdoc.org/content/papers/10.3997/2214-4609-pdb.330.18

Mesa, A. M. & Rengifo, S. (2011). Cesar Rancheria Basin Vol. 6. Medellín, Colombia: ANH-University EAFIT. Department of Geology. https://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Metodos-de-Visualizacion/PETROLEUM%20GEOLOGY%20OF%20COLOMBIA/VOLUMEN_6_CESAR-RANCHERIA_BASINS.pdf

Montes, C., Rodríguez, A., Bayona, G., Hoyos, N., Zapata, S. & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198. 102903. https://doi.org/10.1016/j.earscirev.2019.102903

Mora, C., Parra, P. & Navas, G. (2007). Caracterización geoquímica de rocas y crudos en las cuencas de Cesar-Ranchería, Sinú-San Jacinto, Chocó y área de Soapaga (Cuenca Cordillera Oriental), Informe Final. Agencia Nacional De Hidrocarburos-ANH, 407. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Tesis/CARACTERIZACI%C3%93N%20GEOQU%C3%8DMICA%20DE%20MUESTRAS%20Y%20CRUDO%202007.pdf

Mukhopadhyay, P. K. (1994). Chapter 1. Vitrinite Reflectance as Maturity Parameter, Petrographic and Molecular Characterization and its Applications to basin Modeling. Global Geoenergy Researched Limited, 14 Crescent Plateau, Halifax, Nova Scotia B3M 2V6, Canada. https://pubs.acs.org/doi/abs/10.1021/bk-1994-0570.ch001

Patarroyo, G. D., Torres, G. A. & Rincón, D. A. (2017). Bioestratigrafía e Inferencias de Foraminíferos en las Formaciones Cretácicas La Luna-Colón (Cuenca del Catatumbo, Colombia). Boletín de Geología, 39, 16. https://doi.org/http://dx.doi.org/10.18273/revbol.v39n3-2017002

Patiño, A. M., Parra, M., Ramírez, J. C., Sobel, E. R., Glodny, J., Almendral, A. & Echeverri, S. (2019). Thermochronological constraints on Cenozoic exhumation along the southern Caribbean: The Santa Marta range, northern Colombia. In: Andean Tectonics (pp. 103–132). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816009-1.00007-1

Ronderos D., A. (1957). Yacimientos calcáreos del Cerrejón, (intendencia de la Guajira). Boletín Geológico, 5(3), 63-77. Retrieved from https://revistas.sgc.gov.co/index.php/boletingeo/article/view/349

Sánchez, J. & Mann, P. (2015). Chapter 16: Integrated Structural and Basinal Analysis of the Cesar–Rancheria Basin, Colombia: Implications for its Tectonic History and Petroleum Systems. https://doi.org/10.1306/13531945M1083648

Schumacher, B. A. (2002). Methods for the determination of Total Organic Carbon (TOC) in soils and sediments. United States Environmental Protection Agency. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100S8MB.PDF?Dockey=P100S8MB.PDF

Sieger, R. & Grobe, H. (2013). PanPlot 2 - Software to Visualize Profiles and Time Series; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research: Bremerhaven, Germany. https://doi.pangaea.de/10.1594/PANGAEA.816201

Shagam, R., Kohn, B. P., Banks, P. O., Dasch, L. E., Vargas, R., Rodríguez, G. I. & Pimentel, N. (1984). Tectonic implications of Cretaceous-Pliocene fission-track ages from rocks of the circum-Maracaibo Basin region of western Venezuela and eastern Colombia, The Caribbean-South American Plate Boundary and Regional Tectonics. William E. Bonini, Robert B. Hargraves, Reginald Shagam. https://pubs.geoscienceworld.org/books/book/165/chapter/3791689/Tectonic-implications-of-Cretaceous-Pliocene

Sweeney, J. J. & Burnham, A. K. (1990). Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. American Association of Petroleum Geologist Bulletin, 74, 1559-1570. https://www.osti.gov/biblio/5681562-evaluation-simple-model-vitrinite-reflectance-based-chemical-kinetics

Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Herve, P., Harmen, B., Olaya, J. & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19, 787–813. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000TC900004

Tissot, B. & Welte, D. (1984). Petroleum Formation and Occurrence. Second Edition. Springer-Verlag. 715 pp. https://www.springer.com/gp/book/9783642878152

Vargas, C. A. & Mann, P. (2013). Tearing and breaking of subducted slabs as the result of collision of the Panama Arc-indenter with north-western South America. Bulletin of the Seismological Society of America, 103, 2025–2046. https://doi.org/10.1785/0120120328

Villagómez, D., Spikings, R., Mora, A., Cardona, A., Guzmán, G., Ojeda, G., Cortes, E. & Van der Lelij, R. (2011). Vertical tectonics at a continental crust-oceanic plateau, plate boundary zone: Low temperature thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30, TC4004, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010TC002835

Wygrala, B. P. (1989). Integrated study of an oil field in the southern Po basin, Northern Italy. Ber. Kernforschungsanlage Jülich, 2313: 1-217. http://juser.fz-juelich.de/record/153416/files/FZJ-2014-03033.pdf

How to Cite

APA

Avendaño, G. M., Cruz, L. F., Cruz, L. E. and Garcia, M. (2021). Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data. Earth Sciences Research Journal, 25(2), 179–192. https://doi.org/10.15446/esrj.v25n2.86025

ACM

[1]
Avendaño, G.M., Cruz, L.F., Cruz, L.E. and Garcia, M. 2021. Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data. Earth Sciences Research Journal. 25, 2 (Jul. 2021), 179–192. DOI:https://doi.org/10.15446/esrj.v25n2.86025.

ACS

(1)
Avendaño, G. M.; Cruz, L. F.; Cruz, L. E.; Garcia, M. Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data. Earth sci. res. j. 2021, 25, 179-192.

ABNT

AVENDAÑO, G. M.; CRUZ, L. F.; CRUZ, L. E.; GARCIA, M. Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data. Earth Sciences Research Journal, [S. l.], v. 25, n. 2, p. 179–192, 2021. DOI: 10.15446/esrj.v25n2.86025. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/86025. Acesso em: 19 apr. 2024.

Chicago

Avendaño, Gladys Marcela, Luis Felipe Cruz, Luis Enrique Cruz, and Mario Garcia. 2021. “Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data”. Earth Sciences Research Journal 25 (2):179-92. https://doi.org/10.15446/esrj.v25n2.86025.

Harvard

Avendaño, G. M., Cruz, L. F., Cruz, L. E. and Garcia, M. (2021) “Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data”, Earth Sciences Research Journal, 25(2), pp. 179–192. doi: 10.15446/esrj.v25n2.86025.

IEEE

[1]
G. M. Avendaño, L. F. Cruz, L. E. Cruz, and M. Garcia, “Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data”, Earth sci. res. j., vol. 25, no. 2, pp. 179–192, Jul. 2021.

MLA

Avendaño, G. M., L. F. Cruz, L. E. Cruz, and M. Garcia. “Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data”. Earth Sciences Research Journal, vol. 25, no. 2, July 2021, pp. 179-92, doi:10.15446/esrj.v25n2.86025.

Turabian

Avendaño, Gladys Marcela, Luis Felipe Cruz, Luis Enrique Cruz, and Mario Garcia. “Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data”. Earth Sciences Research Journal 25, no. 2 (July 19, 2021): 179–192. Accessed April 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/86025.

Vancouver

1.
Avendaño GM, Cruz LF, Cruz LE, Garcia M. Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data. Earth sci. res. j. [Internet]. 2021 Jul. 19 [cited 2024 Apr. 19];25(2):179-92. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/86025

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

285

Downloads

Download data is not yet available.