Published
Thermal evolution of Los Cuervos formation in the southern area of the Cesar sub-basin (Colombia), based on geochemical and petrophysical data
Evolución termal de la formación Los Cuervos, en el área sur de la subcuenca Cesar, con base en datos geoquímicos y petrofísicos
DOI:
https://doi.org/10.15446/esrj.v25n2.86025Keywords:
Cesar-Rancheria Basin, Cesar Sub-Basin, Los Cuervos Formation, Source Rock, Geochemical Modeling, Porosity-Depth Relation. (en)Cuenca Cesar-Rancheria, Subcuenca Cesar, Formacion Los Cuervos, Roca generadora, Modelamiento geoquímico, relación porosidad-profundidad. (es)
Downloads
The tectonic complexity to which the post-Cretaceous Cesar-Ranchería basin has been subjected has generated alterations in the evolution of its oil system, evidence of this is the lack of stratigraphic record in the Cesar sub-basin belonging to ages ranging from the Eocene to the Early Miocene. These units that are no longer present could have been deposited and eroded during this period of time, leaving their mark on the closest overlying units. Previously mentioned hypothesis oriented this research to study how the basin filling was in the time range from the Eocene to the early Miocene based on both organic (24 Tmax and 14 %Ro data) and inorganic (514 data of porosity) paleo-geothermometer data of Paleocene age formations present in two new wells ANH-LA LOMA-2 and ANH-CR-LOS CEREZOS-1X. In addition to the data provided by the wells drilled for this study, 31 published Tmax and 13 %Ro data from Los Cuervos Formation in the Calenturitas and La Jagua Mines were used. The results obtained indicate that the continuous deposition of sedimentary units did occur from the Paleocene to the middle Eocene and it is expected that the Sedimentitas del Eoceno Formation has reached a thickness between 2.5 to 3.5km with characteristics of quartz sandstones (density and compaction). This thickness of rock began to be eroded in the late Eocene to the Miocene according to recent thermo-chronological studies. The evidence obtained allow to improve the thermal evolution models of the oil system, to establish when the greatest advances were made in the transformation ratios and to estimate how the oldest source rocks of the Cesar sub-basin are currently in the studied area.
References
Aguilera, R., Sotelo, V., Burgos, C., Arce, C., Gómez, C., Mojica, J. and Osorno, J. (2010). Organic Geochemistry Atlas of Colombia. Second Edition. Earth Sciences Research Journal, 14(Special), 164. https://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/ATLAS_GEOQUIMICO/Atlas_Geoquimico_2010.pdf
American Petroleum Institute (1998). API RP 40. Recommended Practices for Core Analysis. Second edition. American Petroleum Institute, Washington DC. http://w3.energistics.org/RP40/rp40.pdf
ASTM D7708-14. (2014). Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks, ASTM International, West Conshohocken, PA. www.astm.org
Ayala, R. (2009). Análisis Tectonoestratigráfico y de Procedencia en la Subcuenca de Cesar: Relación con los Sistemas Petroleros. MSc. Thesis, Universidad Simón Bolívar, Baruta, Venezuela. http://www.cgares.org/Directorio/Archivos/6276_8%20tesis%20final_cayala.pdf.
Avendaño-Sánchez, G. M. (2019). Source Rocks and Thermal Maturation in the Southeastern area of the Cesar Sub-Basin, Colombia. MSc. Thesis, School of Geology, Universidad Industrial de Santander, Bucaramanga, Colombia. http://tangara.uis.edu.co/biblioweb/pags/cat/popup/pa_detalle_matbib.jsp?parametros=188439%7C %7C1%7C1
Barker, C. (1974). Pyrolysis Techniques for source-Rock Evaluation. AAPG Bulletin, 58(11), 2349–2361. https://doi.org/10.1306/83D91BAF-16C7-11D7-8645000102C1865D
Barrero, D., Pardo, A., Vargas, C. A. & Martínez, J. (2007). Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a new proposal. ANH. Bogotá. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Cuencas-sedimentarias/Documents/colombian_sedimentary_basins.pdf
Bayona, G., Lamus-Ochoa, F., Cardona, A., Jaramillo, C., Montes, C. & Tchegliakova, N. (2007). Procesos orogénicos del Paleoceno para la Cuenca Ranchería (Guajira, Colombia) y áreas adyacentes definidos por análisis de procedencia. Geología Colombiana, 32, 21–46. Retrieved from https://revistas.unal.edu.co/index.php/geocol/article/view/32021/32046
Behar, F., Beaumont, V. & De Penteado, B. (2001). Rock-Eval 6 Technology: Performances and Developments. Oil Gas Sci. Technol., 56, 111–134. https://doi.org/10.2516/ogst:2001013
Bermúdez, M. A. (2009). Cenozoic exhumation patterns across the Venezuelan Andes: insights from fission-track thermochronology. Ph.D. Thesis, School of Geosciences, Université Joseph Fourier-Grenoble I, Grenoble, France. https://tel.archives-ouvertes.fr/tel-00450838
Bjørlykke, K. (2014). Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301,1-14. https://www.sciencedirect.com/science/article/abs/pii/S0037073813002200?via%3Dihub
Cardona, A., Valencia, V. A., Bayona, G., Duque, J., Ducea, M., Gehrels, G., Jaramillo, C., Montes, C., Ojeda, G. & Ruiz, J. (2011). Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta massif and Rancheria Basin, northern Colombia. Terra Nova, 23, 26–34. https://doi.org/10.1111/j.1365-3121.2010.00979.x
Carr, A. D. (2000). Suppression and retardation of vitrinite reflectance, part 1. Journal of Petroleum Geology, 23(3), 313–343. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1747-5457.2000.tb01022.x
DiPrimio, R. & Horsfield, B. (2006). From petroleum-type organofacies to hydrocarbon phase prediction. AAPG Bulletin, 90, 7, 1031-1058. https://doi.org/10.1306/02140605129
García, M., Mier, R., Arias, A., Cortés, Y., Moreno, M., Salazar, O. & Jiménez, M. (2008). Prospectividad de la Cuenca Cesar-Ranchería. Grupo de Investigación en Geología de Hidrocarburos y Carbones, Universidad Industrial de Santander (UIS). Bucaramanga. http://oilproduction.net/files/cuencas%20petroleras%20de%20colombia-2009.pdf
Guo, Q., Littke, R. & Zieger, L. (2018). Petrographical and geochemical characterization of sub-bituminous coals from mines in the Cesar-Ranchería Basin, Colombia. International Journal of Coal Geology, 191, 66–79. https://doi.org/10.1016/j.coal.2018.03.008
Hernández, M. (2003). Memoria Explicativa Geología Plancha 48, Jagua de Ibirico. Escala 1:100.000, INGEOMINAS. Bogotá. http://recordcenter.sgc.gov.co/B4/13010010020444/documento/PDF/0101204441102000.pdf
Hernández, O. & Jaramillo, J. M. (2008). Reconstrucción de la historia termal en los sectores de Luruaco y Cerro Cansona-cuenca del Sinú-San Jacinto y el piedemonte occidental de la Serranía del Perijá entre Codazzi y la Jagua de Ibirico-cuenca Cesar-Ranchería. Agencia Nacional de Hidrocarburos: Bogotá, Colombia, 58 P. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Tesis/Reconstruccion_historia_termal_sector_de_Sinu_San_Jacinto_2009.pdf
Kellogg, J. N. (1984). Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geological Society of America, Memoir 162, 239–262. https://doi.org/10.1130/MEM162-p239
Kim, Y., Lee, C. & Lee, E. Y. (2018). Numerical analysis of sedimentary compaction: Implications for porosity and layer thickness variation. Journal of the Geological Society of Korea. 54, 631-640. http://dx.doi.org/10.14770/jgsk.2018.54.6.631
Lee, E. Y., Novotny, J. & Wagreich, M. (2019). Subsidence Analysis and Visualization - For Sedimentary Basin Analysis and Modelling. Springer, Cham, 56 p. https://www.springerprofessional.de/subsidence-analysis-and-visualization/15849410
Martínez de Vivas, M., Calderón, W., Zamora, W., Rodríguez, I. & López, E. (2012). Modelamientos Numéricos 3D de Sistemas Petrolíferos en la Cuenca Cesar–Ranchería: Nuevas Ideas Acerca de su Potencial Petrolífero. In: ACGGP (p. 9). https://www.earthdoc.org/content/papers/10.3997/2214-4609-pdb.330.18
Mesa, A. M. & Rengifo, S. (2011). Cesar Rancheria Basin Vol. 6. Medellín, Colombia: ANH-University EAFIT. Department of Geology. https://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Metodos-de-Visualizacion/PETROLEUM%20GEOLOGY%20OF%20COLOMBIA/VOLUMEN_6_CESAR-RANCHERIA_BASINS.pdf
Montes, C., Rodríguez, A., Bayona, G., Hoyos, N., Zapata, S. & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198. 102903. https://doi.org/10.1016/j.earscirev.2019.102903
Mora, C., Parra, P. & Navas, G. (2007). Caracterización geoquímica de rocas y crudos en las cuencas de Cesar-Ranchería, Sinú-San Jacinto, Chocó y área de Soapaga (Cuenca Cordillera Oriental), Informe Final. Agencia Nacional De Hidrocarburos-ANH, 407. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Tesis/CARACTERIZACI%C3%93N%20GEOQU%C3%8DMICA%20DE%20MUESTRAS%20Y%20CRUDO%202007.pdf
Mukhopadhyay, P. K. (1994). Chapter 1. Vitrinite Reflectance as Maturity Parameter, Petrographic and Molecular Characterization and its Applications to basin Modeling. Global Geoenergy Researched Limited, 14 Crescent Plateau, Halifax, Nova Scotia B3M 2V6, Canada. https://pubs.acs.org/doi/abs/10.1021/bk-1994-0570.ch001
Patarroyo, G. D., Torres, G. A. & Rincón, D. A. (2017). Bioestratigrafía e Inferencias de Foraminíferos en las Formaciones Cretácicas La Luna-Colón (Cuenca del Catatumbo, Colombia). Boletín de Geología, 39, 16. https://doi.org/http://dx.doi.org/10.18273/revbol.v39n3-2017002
Patiño, A. M., Parra, M., Ramírez, J. C., Sobel, E. R., Glodny, J., Almendral, A. & Echeverri, S. (2019). Thermochronological constraints on Cenozoic exhumation along the southern Caribbean: The Santa Marta range, northern Colombia. In: Andean Tectonics (pp. 103–132). Elsevier Inc. https://doi.org/10.1016/b978-0-12-816009-1.00007-1
Ronderos D., A. (1957). Yacimientos calcáreos del Cerrejón, (intendencia de la Guajira). Boletín Geológico, 5(3), 63-77. Retrieved from https://revistas.sgc.gov.co/index.php/boletingeo/article/view/349
Sánchez, J. & Mann, P. (2015). Chapter 16: Integrated Structural and Basinal Analysis of the Cesar–Rancheria Basin, Colombia: Implications for its Tectonic History and Petroleum Systems. https://doi.org/10.1306/13531945M1083648
Schumacher, B. A. (2002). Methods for the determination of Total Organic Carbon (TOC) in soils and sediments. United States Environmental Protection Agency. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100S8MB.PDF?Dockey=P100S8MB.PDF
Sieger, R. & Grobe, H. (2013). PanPlot 2 - Software to Visualize Profiles and Time Series; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research: Bremerhaven, Germany. https://doi.pangaea.de/10.1594/PANGAEA.816201
Shagam, R., Kohn, B. P., Banks, P. O., Dasch, L. E., Vargas, R., Rodríguez, G. I. & Pimentel, N. (1984). Tectonic implications of Cretaceous-Pliocene fission-track ages from rocks of the circum-Maracaibo Basin region of western Venezuela and eastern Colombia, The Caribbean-South American Plate Boundary and Regional Tectonics. William E. Bonini, Robert B. Hargraves, Reginald Shagam. https://pubs.geoscienceworld.org/books/book/165/chapter/3791689/Tectonic-implications-of-Cretaceous-Pliocene
Sweeney, J. J. & Burnham, A. K. (1990). Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. American Association of Petroleum Geologist Bulletin, 74, 1559-1570. https://www.osti.gov/biblio/5681562-evaluation-simple-model-vitrinite-reflectance-based-chemical-kinetics
Taboada, A., Rivera, L. A., Fuenzalida, A., Cisternas, A., Herve, P., Harmen, B., Olaya, J. & Rivera, C. (2000). Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19, 787–813. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000TC900004
Tissot, B. & Welte, D. (1984). Petroleum Formation and Occurrence. Second Edition. Springer-Verlag. 715 pp. https://www.springer.com/gp/book/9783642878152
Vargas, C. A. & Mann, P. (2013). Tearing and breaking of subducted slabs as the result of collision of the Panama Arc-indenter with north-western South America. Bulletin of the Seismological Society of America, 103, 2025–2046. https://doi.org/10.1785/0120120328
Villagómez, D., Spikings, R., Mora, A., Cardona, A., Guzmán, G., Ojeda, G., Cortes, E. & Van der Lelij, R. (2011). Vertical tectonics at a continental crust-oceanic plateau, plate boundary zone: Low temperature thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30, TC4004, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010TC002835
Wygrala, B. P. (1989). Integrated study of an oil field in the southern Po basin, Northern Italy. Ber. Kernforschungsanlage Jülich, 2313: 1-217. http://juser.fz-juelich.de/record/153416/files/FZJ-2014-03033.pdf
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Dilan Arturo Martínez-Sánchez, Sait Khurama-Velásquez, Carlos Alberto Ríos-Reyes. (2025). Lithostratigraphic analysis of the La Loma Formation and depositional model of the intermontane Cesar Sub-Basin (Colombia) during the Eocene: Exploring potential for CO2 storage. Journal of South American Earth Sciences, 158, p.105486. https://doi.org/10.1016/j.jsames.2025.105486.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.