Published
Analysis of the influence characteristics and correction effect of the mine direct current method in advance detection of roadway cavities
Análisis de las características de influencia y efecto de corrección del método de corriente continua en la detección avanzada de la cavidad de la calzada en minería
DOI:
https://doi.org/10.15446/esrj.v27n2.86211Keywords:
Mine DC electric method;advanced detection;numerical simulation;ratio method (en)método eléctrico de corriente continua, detección avanzada, simulación numérica, método de proporción (es)
Downloads
To ensure safety during coal mining, the DC electric method is frequently used for the advanced detection of concealed water-rich abnormal geological bodies located ahead of a drivage roadway. However, to some extent, the accuracy of the detection is influenced by the roadway cavity, resulting in a deviation from the actual location of the anomaly. To investigate this phenomenon, the principle of advanced detection based on a spheroidal physical model was analyzed via “comparative analyses” and “simulated” methods using COSMOL Multiphysics software. Following the principle of numerical simulations, the influence of the roadway cavity on the accuracy of the advanced DC detection method was introduced, and the ratio of apparent resistivity calculated from actual data to that calculated only with the roadway cavity was carried out to obtain the roadway correction coefficient. This coefficient was employed to correct the apparent resistivity data for advanced 3-D detection. Additionally, the response characteristics of the anomalies at different electrode layout locations in the roadway were discussed. The results show that the ratio method effectively corrects the influence of the roadway during advance detection using the DC electric method and simultaneously improves the resolution of geological anomalies and the accuracy of positioning. Additionally, the influence of the roadway was related to the relative positions of the electrodes along the roadway. When the electrodes are set at the junction of the floor and the sidewall, the obtained resistivity curve is less affected. Therefore, the resolutions of the anomalies are higher, and their positioning is more accurate. Furthermore, a practical application of the ratio method indicated that the corrected curves reflected the geological anomalies better.
El método eléctrico de corriente continua (DC) se usa frecuentemente para la detección avanzada de cuerpos geológicos anormales ricos en agua y ocultos en la calzada de la mina y así asegurar la operación extractiva de carbón. Sin embargo, en cierto alcance, la exactitud de la detección puede estar alterada por la cavidad de la calzada, lo que significa una desviación en la ubicación de la anomalía. Para investigar este fenómeno se analizó el principio de detección avanzada, que está basado en el modelo físico esférico, a través de métodos de "análisis comparativos" y "simulados" a través del software Cosmol Multiphysics. De acuerdo con los principios de simulaciones numéricas, se introdujo la influencia de la cavidad de la calzada en la exactitud de la detección de corriente continua avanzada y se computó la proporción de resistividad aparente calculada con este método frente a aquella calculada solo con información de la cavidad de la calzada para así obtener el coeficiente de corrección. Este coeficiente se empleó para corregir la información de resistividad aparente en la detección 3-D avanzada. Adicionalmente, se discutieron las características de respuesta de las anomalías en varias posiciones con un diseño de electrodos en la calzada. Los resultados muestran que el método de proporción corrige efectivamente la influencia de la calzada durante el avance de la detección a través del método eléctrico de corriente continua y simultáneamente mejora la visualización de las anomalías geológicas y la exactitud del posicionamiento de estas anomalías. Además, la influencia de la calzada se ve reflejada en las posiciones relativas de los electrodos a lo largo de la calzada. Cuando los electrodos están en la zona donde confluyen el suelo y la pared, la curva de resistividad obtenida se ve menos menos afectada. Por lo tanto, la resolución de las anomalías es mayor y sus posiciones son más exactas. Además, una aplicación práctica del método de proporción indicó que las curvas corregidas reflejaron mejor las anomalías geológicas.
References
Cheng, J. L., Li, F., Peng, S. P., & Sun, X. Y. (2014). Research Progress and Development Direction on Advanced Detection in Mine Roadway Working Face Using Geophysical Methods. Journal of China Coal Society, 39(8), 1742-1750. DOI: 10.13225/j.cnki.jccs.2014.9007
Hao, Y. J., Li, H., & Wu, Y. (2020). Research on Advance Detection of Direct Current Method in Driving Roadway Based on COMSOL. Coal Mine Modernization, 159(06), 104-106.
Hu, X. W., & Zhang, P. S. (2019). Analysis of Hidden Collapse Column Ahead of Tunneling Face Detected by DC Resistivity Method. Progress in Geophysics, 34(3), 1176-1183. DOI: 10.6038/pg2019CC0212
Li, F., Zhang, Y. C., Lian, H. Q., Wang, S. L., Qi, L. M., & Zheng, G. Q. (2020). Discussion on problems of direct current advance detection method in roadway driving face. Coal Science and Technology, 48(12), 250-256.
Liu, L. (2014). Study on DC Resistivity Method 3D Advanced Prediction Technology in Mine. China University of Mining and Technology.
Lu, J. J., & Wu, X. P. (2013). 3D Mumerical Modeling of Tunnel DC Resistivity for In-advance Detection. Coalfield Geology and Prospecting, 41(6), 87-90.
Ma, B. Z., & Li, X. (2013). Roadway Influences on Advanced DC Detection in Underground Mine. Coal, Geology & Exploration, 41(1), 78-81. DOI: 10.3969/j.issn.1001-1986.2013.01.016
Peng, S. (2020). Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining. Journal of China Coal Society, 45(7), 2331-2345. DOI: 10.13225/j.cnki.jccs.DZ20.1089
Wang, M., Liu, Y., Mu, Y., Gao, W. F., & Zhai, P. H. (2021). Research and application of multi-array mine DC electrical method for road-way advanced detection. Journal of China Coal Society, 46(S1), 396-405.
Wang, X. L., Feng, H., Li, P., & Wang, K. B. (2011). Application of COMSOL Multiphysics to Pilot Detection Positive Evolution of Mine Resistivity. Coal Science and Technology, 39(11), 112-117.
Yang, H. Z., Hu, X. W., & Zhang, P. S. (2013). Numerical Simulation of Advanced Detection by Direct Current Electrical Method in Tunnel. Chinese Journal of Engineering Geophysics, 10(2), 200-204.
Yang, Z., Wu, S. Z., & Chen, S. S. (2016). Research and Application on Advanced Detection by DC Resistivity Method. Coal Technology, 35(12), 140-142.
Yuan, L. (2021). Study on the Development Strategy of Coal mine Safety in China. China Coal, 47(6), 1-6.
Yue, J. H., Zhang, H. R., Yang, H. Y. (2019). Electrical Prospecting Methods for Advance Detection: Progress, Problems, and Prospects in Chinese Coal Mines. IEEE Geoscience and Remote Sensing Magazine, 7(3), 94-106. DOI: 10.1109/MGRS.2018.2890677 DOI: https://doi.org/10.1109/MGRS.2018.2890677
Zhan, W. F., Wu, Y. L., & Li, W. (2018). Simulation and Analysis of Electric Field Distribution and its Influence Factors in Coal Mine Direct Current Method. Coal Geology and Exploration, 46(1), 139-147. DOI: 10.3969/j.issn.1001-1986.2018.01.024
Zhang, J. F., Zhao, G. D., Yang, Y .G., & Dong, X. (2016). Influence Factors of DC Focusing Advanced Detection and Flume Simulation Experiment. Computing Techniques for Geophysical and Geochemical Exploration, 38(4), 473-479.
Zhang, J. T., Zhou, Y., Liu, Z. M. (2015). Dual-Frequency Induced Polarization Method for Advanced Detection on Disastrous Water-Conducting or Water-Bearing Structure in Roadway. Journal of China Coal Society, 40(8), 1894-1899 (in Chinese with English abstract). DOI:10.13225/j.cnki.jccs.2015.0387
Zhang, L. (2011). Research on Numerical Simulation for DC Focusing Advanced Detection in Tunnel with Finite Element Method. Central South University.
Zhao, G. Y., Wang, J., Zhai, P. H., Li, C. S., & Liu, L. J. (2018). Research on Mine Direct Current Method Advanced Detection Based on COMSOL Multiphysics Numerical Simulation. Coal Technology, 37(8), 177-179.
Zhou, G. Q., Wang, Y. F., Chen, X. H., Chen, X. H., Yue, M. X., Zhai, F. Q., Yang, X. D., Wu, X. P., Cao, Y., Cui, Y. (2022). Research on Forward Modeling of “Triangular Cone” Type Direct Current Method. Journal of China Coal Society, 47(08), 3015-3023.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2023 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.