Published

2021-10-27

A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique

Análisis comparativo de licuación del suelo con un algoritmo basado en Matlab®: soiLique

DOI:

https://doi.org/10.15446/esrj.v25n3.86525

Keywords:

Soil Liquefaction, MATLAB®, Geophysical Engineering, Geotechnical Engineering, Natural Hazards, GUI. (en)
Ingeniería de suelos, Licuación del suelo, dinámicas de suelos, propiedades del suelo, pruebas de campo, Riesgos Naturales, terremotos, interfaz gráfica de usuario, Matlab® (es)

Downloads

Authors

Soil liquefaction is one of the ground failures induced by earthquakes. Determining the safety factor and the settlements are the most common analyses to decrease liquefaction-induced failures and hazards. Scientists have suggested numerous empirical formulas to detect and mitigate liquefaction-based hazards, and they have been used over the decades. This study aims to present a user-friendly and interactive program for deterministic soil liquefaction analyses. The algorithm presented in this study, soiLique, is the first MATLAB® program, including a graphical user interface that provides the deterministic liquefaction analysis with the computation of parameters propounded with the formulas. One of the advantages of soiLique is that it allows picking the physical property of every layer (i.e., fine or coarse), which provides dealing with liquefaction prone layer(s) directly when necessary. Not only can one calculate parameters regarding soil liquefaction with the help of this program, but one also can see graphically supported results. The robustness of soiLique is checked with another soil liquefaction analysis program, SoilEngineering, which was introduced by Ozcep (2010). Calculations were done separately using real SPT data and synthetic data such as VS measurements and CPT data. The real SPT data and synthetic VS data were used to compare soiLique and SoilEngineering (Ozcep, 2010). The present study presents an example of CPT data analysis but could not be used for comparison. Comparisons reveal that outputs of soiLique and results of SoilEngineering showed a good agreement.

La licuación del suelo es un corrimiento del terreno inducido por movimientos sísmicos. La determinación del factor de seguridad y de los asentamientos son los análisis más comunes para reducir las fallas y las amenazas causadas por la licuación. Numerosas formulas empíricas han sido sugeridas por expertos para detectar y mitigar los riesgos de licuación, y estas han sido usadas por décadas. Este estudio busca presentar un programa interactivo y de fácil uso para los análisis determinísticos de licuacón del suelo. El algoritmo presentado en este estudio, soiLique, es el primer programa basado en Matlab® e incluye una interfaz gráfica de usuario que provee el análisis determinístico de licuación con los parámetros de computación propuestos con las formulas. Una de las ventajas de soiLique es que brinda la oportunidad de elegir las propiedades físicas de cada capa (por ejemplo, fina o gruesa), lo que permitiría tratar directamente con las capas propensas a la licuación cuando sea necesario. No solo se pueden calcular los parámetros relacionados a la licuación del suelo con la ayuda de este programa sino que además se pueden ver gráficamente los resultados. La robustez de soiLique se verificó con otro programa de análisis de licuación del suelo, SoilEngineering, que fue introducido por Ozcep en 2010. Se hicieron cálculos separados con información real de Pruebas Estándares de Penetración (SPT, del inglés Standar Penetration Test), información sintética de Velocidad de Onda de Corte Medida (VS, del inglés Measured Shear Wave Velocity) e información de Pruebas de Penetración Cónica (CPT, del inglés Conic Penetration Test). La información real SPT y la información sintética VS fueron usadas para comparar los resultados de soiLique y SoilEngineering. En este estudio se presentan un ejemplo de información CPT pero no se usa en la comparación. Las comparaciones muestran que la información arrojada por soiLique y los resultados de SoilEngineering muestran concordancia.

References

Ambraseys, N. N. (1988). Engineering seismology: part I. Earthquake engineering & structural dynamics, 17(1), 1-50. https://doi.org/10.1002/eqe.4290170102

Andrus, R. D., & Stokoe II, K. H. (2000). Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental engineering, 126(11), 1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)

Bekin, E., & Ozcep, F. (2017). SoiLique: A MATLAB® Based Program to analyze soil Liquefaction and some applications/comparisons. Proceedings of EGU General Assembly Conference Abstracts (Vol. 19, p. 11868).

Boulanger, R. W., & Idriss, I. M. (2014). CPT and SPT based liquefaction triggering procedures. Report No. UCD/CGM.-14, 1.

Chapra, S. C. (2012). Applied numerical methods with MATLAB for engineers and scientists. New York: McGraw-Hill.

Idriss, I. M., & Boulanger, R. W. (2008). Soil liquefaction during earthquake. Engineering monograph, EERI, California, USA, 266.

Ishihara, K., & Yoshimine, M. (1992). Evaluation of settlements in sand deposits following liquefaction during earthquakes. Soils and Foundations, 32(1), 173-188. https://doi.org/10.3208/sandf1972.32.173

Kuribayashi, E., & Tatsuoka, F. (1975). Brief review of liquefaction during earthquakes in Japan. Soils and Foundations, 15(4), 81-92. https://doi.org/10.3208/sandf1972.15.4_81

Liao, S. S., & Whitman, R. V. (1986). Overburden correction factors for SPT in sand. Journal of Geotechnical Engineering, 112(3), 373-377. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(373)

Liu, Y., & Xie, J. F. (1984). Seismic liquefaction of sand. Earthquake Pres, China.

Mollamahmutoglu, M., & Babuccu, F. (2006). Zeminlerde sivilasma analiz ve iyilestirme yontemleri. Gazi Kitabevi.

Ozcep, F. (2010). SoilEngineering: A Microsoft Excel® spreadsheet© program for geotechnical and geophysical analysis of soils. Computers & Geosciences, 36(10), 1355-1361. https://doi.org/10.1016/j.cageo.2010.01.015

Ozcep, F., Karabulut, S., Ozel, O., Ozcep, T., Imre, N., & Zarif, H. (2014). Liquefaction-induced settlement, site effects and damage in the vicinity of Yalova City during the 1999 Izmit earthquake, Turkey. Journal of Earth System Science, 123(1), 73-89. https://doi.org/10.1007/s12040-013-0387-7

Robertson, P. K., Woeller, D. J., & Finn, W. D. L. (1992). Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Canadian Geotechnical Journal, 29(4), 686-695. https://doi.org/10.1139/t92-075

Seed, H. B., & Idriss, I. M. (1967). Analysis of soil liquefaction: Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, 93(3), 83-108.

Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundations, 97(9), 249-1273. https://doi.org/10.1061/JSFEAQ.0001662

Suzuki, Y., Koyamada, K., & Tokimatsu, K. (1997). Prediction of liquefaction resistance based on CPT tip resistance and sleeve friction. Proceedings, 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Germany, Vol. 1, pp. 603–06

Sykora, D. W. (1987). Creation of a data base of seismic shear wave velocity for correlation analysis. Geotechnical Laboratory. Miscellaneous Paper GL-87-26, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.

Terzaghi, K., & Peck, R. B. (1967). Soil Mechanics in Engineering Practice. Second ed. Wiley International Edition, New York 321pp.

Tezcan, S., & Teri, L. (1996). Shear wave propagation and liquefaction in layered soils, Türkiye Deprem Vakfı Yayınları, No: TDV. TR 96-0005.

Tokimatsu, K., & Seed, H. (1987). Evaluation of settlements in sands due to earthquake shaking. Journal of Geotechnical Engineering, 113(8), 861-878. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:8(861)

Ulusay, R., Aydan, O., Kumsar, H., Sonmez, H., & Tuncay, E. (2000). Turkiye’de Son Depremlerde Gozlenen Sivilasma Olgusu ve Bati Anadolu’da Sıvılasma Potansiyeline Genel Bir Bakis. Bati Anadolu’nun Depremselligi Sempozyumu. Izmir, Bildiriler Kitabi, 323-336.

Yilmaz, I., & Yavuzer, D. (2005). Liquefaction potential and susceptibility mapping in the city of Yalova, Turkey. Environmental Geology, 47(2), 175-184. https://doi.org/10.1007/s00254-004-1141-x

Youd, T. L., & Idriss, I. M. (1997). Proceedings of the NCEER workshop on evaluation of liquefaction resistance of soils.

Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, L. F. Jr., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson, W. F. III., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., … Stokoe, K. H. II. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical Engineering, 127(10), 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)

How to Cite

APA

Bekin, E. and Ozcep, F. (2021). A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique . Earth Sciences Research Journal, 25(3), 323–340. https://doi.org/10.15446/esrj.v25n3.86525

ACM

[1]
Bekin, E. and Ozcep, F. 2021. A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique . Earth Sciences Research Journal. 25, 3 (Oct. 2021), 323–340. DOI:https://doi.org/10.15446/esrj.v25n3.86525.

ACS

(1)
Bekin, E.; Ozcep, F. A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique . Earth sci. res. j. 2021, 25, 323-340.

ABNT

BEKIN, E.; OZCEP, F. A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique . Earth Sciences Research Journal, [S. l.], v. 25, n. 3, p. 323–340, 2021. DOI: 10.15446/esrj.v25n3.86525. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/86525. Acesso em: 16 jul. 2024.

Chicago

Bekin, Ekrem, and Ferhat Ozcep. 2021. “A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique ”. Earth Sciences Research Journal 25 (3):323-40. https://doi.org/10.15446/esrj.v25n3.86525.

Harvard

Bekin, E. and Ozcep, F. (2021) “A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique ”, Earth Sciences Research Journal, 25(3), pp. 323–340. doi: 10.15446/esrj.v25n3.86525.

IEEE

[1]
E. Bekin and F. Ozcep, “A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique ”, Earth sci. res. j., vol. 25, no. 3, pp. 323–340, Oct. 2021.

MLA

Bekin, E., and F. Ozcep. “A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique ”. Earth Sciences Research Journal, vol. 25, no. 3, Oct. 2021, pp. 323-40, doi:10.15446/esrj.v25n3.86525.

Turabian

Bekin, Ekrem, and Ferhat Ozcep. “A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique ”. Earth Sciences Research Journal 25, no. 3 (October 27, 2021): 323–340. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/86525.

Vancouver

1.
Bekin E, Ozcep F. A comparative soil liquefaction analysis with a Matlab® based algorithm: soiLique . Earth sci. res. j. [Internet]. 2021 Oct. 27 [cited 2024 Jul. 16];25(3):323-40. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/86525

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Zeval Aytaş, Nuray Alpaslan, Ferhat Özçep. (2023). Evaluation of liquefaction potential by standard penetration test and shear wave velocity methods: a case study. Natural Hazards, 118(3), p.2377. https://doi.org/10.1007/s11069-023-06093-9.

Dimensions

PlumX

Article abstract page views

383

Downloads

Download data is not yet available.