Published

2021-10-27

Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith's origin and depositional environment

Características petrográficas y geoquímicas de los mármoles de Gimo, en el Kurdistan iraquí: limitaciones en el origen y ambiente deposicional de sus protolitos

DOI:

https://doi.org/10.15446/esrj.v25n3.88686

Keywords:

Gimo marble, metacarbonate, homeoblastic, mosaic texture (en)
mármoles de Gimo; región del Kurdistán; textura homeoblástica; textura mosaica (es)

Downloads

Authors

  • Tola Ahmed Mirza University of Sulaimani https://orcid.org/0000-0001-6951-8914
  • Stavros P. Kalaitzidis Department of Geology, University of Patras, GR-26504, Rio-Patras, Greece
  • Sardar S. Fatah Department of Geology, University of Patras, GR-26504, Rio-Patras, Greece
  • Sophia Tsiotou University of Sulaimani, Iraq

It is essential to identify marbles' petrographic and geochemical characteristics to determine the palaeo-environmental settings where their carbonate protoliths formed. The petrogenesis of massive Gimo marbles in the Gole area, Kurdistan Region of northeast Iraq, was investigated in this study through a combination of field mapping, petrographic, and geochemical techniques. Petrographic examination of these marbles reveals that mineral compositions are similar in all samples, with both homeoblastic and mosaic textures occurring, in addition to opaque grains that provide evidence of mineralization. Geochemical analyses show that the average calcium carbonate content of the marble is 94.96%; hence, the marble is lithologically characterized as a pure calcite marble. In most samples, the silica content was below 2 wt.%, with high values related to quartz veinlets. A range of geochemical indices and Post-Archean Australian Shale (PAAS–normalized rare earth element (REE) patterns) suggest that the limestone protolith was deposited in a shallow, near-shore marine environment on a continental margin, with very low input of detrital material. The negative Ce anomalies indicate that the protoliths of the Gimo marbles were carbonate rocks of a sedimentary origin.

Este artículo parte de la importancia de identificar las características geoquímicas y petrográficas de los mármoles para determinar la configuración paleoambiental donde se formaron sus protolitos carbonatados. En este estudio se investigó la petrogenésis de los mármoles masivos de Gimo, en el área de Gole, región del Kurdistán en el noreste iraquí, a través de la combinación de mapeo de campo, con técnicas petrográficas y geoquímicas. El exámen petrográfico de estos mármoles revela que las composiciones minerales son similares en todos los ejemplos, tanto con texturas homeoblásticas como mosaicas y con adición de granos opacos que ofrecen evidencias de la mineralización. Los análisis geoquímicos muestran que el contenido promedio de calcio carbonatado del mármol es de 94.96 %, lo que significa que estas muestras se caracterizan litológicamente como mármoles de calcita pura. En muchos de los ejemplos, el contenido de sílice fue inferior a 2 wt%, con altos valores relacionados a vetillas de cuarzo. Una gama de índices geoquímicos y Esquistos Australianos Posarcaicos (PAAS, en inglés; patrones de elementos tierras raras normalizados) sugieren que los protolitos de caliza se alojaron en un ambiente somero en el margen continental cercano a la línea costera, con un  ingreso de contenido de detritos muy bajo. Las anomalías negativas de cerio indican que los protolitos de los mármoles de Gimo fueron rocas carbonatadas de origen sedimentario.

References

Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), 211-238. https://doi.org/10.1016/0040-1951(94)90030-2

Ali, S. A., Ismail, S. A., Nutman, A. P., Bennett, V. C., Jones, B. G., & Buckman, S. (2016). The intra-oceanic Cretaceous (~ 108 Ma) Kata–Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure. Lithos, 260, 154-163. DOI:10.1016/j.lithos.2016.05.027

Amrouni, K. S., Shaltami, O. R., El-Hawat, A. S., Pope, M. C., Amer, A., Elbileikia, E. A., ... & Wehner, M. P. (2018). Geochemical Analysis of the Carbonate-Evaporite Miocene Outcrops in the Cyrenaica Region of Libya: Cyrenaica Platform and Sirt Basin. Gulf Coast Association of Geological Societies, 68, 35-49.

Aswad, K. J. (1999). Arc-continent collision in Northeastern Iraq as evidenced by Mawat and Penjwin Ophiolite Complexes. Raffidain Journal of Science, 10, 51-61.

Aswad, K. J., Aziz, N. R., & Koyi, H. A. (2011). Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological magazine, 148(5-6), 802-818. https://doi.org/10.1017/S0016756811000422

Aswad, K. J., & Elias, E. M. (1988). Petrogenesis, geochemistry and metamorphism of spilitized subvolcanic rocks of the Mawat Ophiolite Complex, NE Iraq. Ofioliti, 13(2/3), 95-109.

Awadh, S. M. (1991). Petrology and geochemistry of the Shalair Metamorphic Rock Group. Shalair Valley area. Northeastern Iraq. Master thesis (Unpublished). Baghdad University, Science college, Iraq.

Awadh, S. M., & Kettanah, Y. (2008). Petrology, Geochemistry and Tectonical Environment of The Shalair Metamorphic Rock Group and Katar Rash Volcanic Group, Shalair Vally area, Northeastern Iraq. Iraqi Journal of Science, 49(1), 149-158.

Banner, J. L., Hanson, G. N., & Meyers, W. J. (1988). Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian); implications for REE mobility during carbonate diagenesis. Journal of Sedimentary Research, 58(3), 415-432. https://doi.org/10.1306/212F8DAA-2B24-11D7-8648000102C1865D

Barker, A. J. (2014). A key for identification of rock-forming minerals in thin section. CRC Press. London, UK. 182pp.

Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2), 37-55. https://doi.org/10.1016/0301-9268(95)00087-9

Bau, M. (1996). Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3), 323-333. https://doi.org/10.1007/s004100050159

Bolton, C. M. G. (1958). The geology of the Ranya. Site investigation co – report. NIMCO Lib. Unpublished report, Baghdad, Iraq.

Boulvais, P., Fourcade, S., Moine, B., Gruau, G., & Cuney, M. (2000). Rare-earth elements distribution in granulite-facies marbles: a witness of fluid–rock interaction. Lithos, 53(2), 117-126. DOI:10.1016/S0024-4937(00)00013-X

Brownlow, A. H. (1996). 1996: Geochemistry. Upper Saddle River, NJ: Prentice-Hall. pp. 350-351.

Buday, T. (1980). The regional geology of Iraq: tectonism, magmatism and metamorphism (Vol. 2). State Organization for Minerals, Directorate General for Geological Survey and Mineral Investigations.

Buday, E., & Blackman, S. (1975). Hot food merchandiser U.S. Patent No. 3,911,248. Washington, DC: U.S. Patent and Trademark Office.

Buday, T., & Jassim, S. Z. (1987). The Regional Geology of Iraq. Vol. 2, Tectonism, Magmatism and Metasomatism. Kassab, IM, and Abbas. DG Geol. Surv. Min. Invest., lib. Published, Baghdad, Iraq. 352p.

Chen, J., Algeo, T. J., Zhao, L., Chen, Z. Q., Cao, L., Zhang, L., & Li, Y. (2015). Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth-science reviews, 149, 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013

Clarke, F. N. (1911). The data of geochemistry. 2nd ed., Washington Government Printing Press: 782p.

Cullers, R., Chaudhuri, S., Kilbane, N., & Koch, R. (1979). Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the USA. Geochimica et Cosmochimica Acta, 43(8), 1285-1301. https://doi.org/10.1016/0016-7037(79)90119-4

Davou, D. D., & Ashano, E. C. (2009). The geochemical chararateristics of the marble deposits east of Federal Capital Territory (FCT), Nigeria. Global Journal of Geological Sciences, 7(2). DOI:10.4314/gjgs.v7i2.51608

DeVilliers, P. R. (1975). Geology of the Shalair Valley. SOM Lib., Baghdad, 270152

De Vera, J., Gines, J., Oehlers, M., McClay, K., & Doski, J. (2009). Structure of the Zagros fold and thrust belt in the Kurdistan Region, northern Iraq. Trabajos de geología, (29).

Dypvik, H., & Harris, N. B. (2001). Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+ Rb)/Sr ratios. Chemical geology, 181(1-4), 131-146. DOI: 10.1016/S0009-2541(01)00278-9

Elderfield, H. (1988). The oceanic chemistry of the rare-earth elements. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 325(1583), 105-126. https://doi.org/10.1098/rsta.1988.0046

Ephraim, B. E. (2012). Investigation of the geochemical signatures and conditions of formation of metacarbonate rocks occurring within the Mamfe embayment of south-eastern Nigeria. Earth Sciences Research Journal, 16(2), 121-138.

Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong Jr, R. H., & Onasch, C. M. (2004). Calcite twin morphology: a low-temperature deformation geothermometer. Journal of structural Geology, 26(8), 1521-1529. https://doi.org/10.1016/j.jsg.2003.11.028

Frank, W. (1975). Sediment Chemische and Palolcologische Asperkte Stablier Schewellen. Ben Sonderforschungsberoich, 48, 31-40.

Frimmel, H. E. (2009). Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, 258(3-4), 338-353. https://doi.org/10.1016/j.chemgeo.2008.10.033

Garrels, R. M., & Mckenzie, F. T. (1971). Evolution of sedimentary rocks. WW Worton and Co. Inc. New York, 394.

Georgieva, M., Cherneva, Z., Hekimova, S., & Petrova, A. (2009). Petrology of marbles from the Arda tectonic unit, Central Rhodope, Bulgaria. National conference, Geosciences.

Goldschmidth, J. R., Graff, L., & Joensu, O. I. (1955). The occurrence of magnesium calcite in nature. Geochimica et Cosmochimica Acta, 1, 212-230. https://doi.org/10.1016/0016-7037(55)90033-8

Haskin, L. A., Wildeman, T. R., Frey, F. A., Collins, K. A., Keedy, C. R., & Haskin, M. A. (1966). Rare earths in sediments. Journal of Geophysical Research, 71(24), 6091-6105. https://doi.org/10.1029/JZ071i024p06091

Jassim, S. Z., & Goff, J. C. (2006). Geology of Iraq. DOLIN, sro, distributed by Geological Society of London. 341pp.

Jassim, S. Z., & MI, A. H. (1977). Petrography and origin of the Mawat and Penjwin Igneous Complex: a comparison. Journal of the Geological Society of Iraq, special issue, 169-210.

Jassim, Z., Buda, G., Neuzilova, M., & Suk, M. (1982). Metamorphic development of the Iraqi Zagros ophiolite zone. Krystalinikum, 16, 21-40.

Jarvis, J. C., Wildeman, T. R., & Banks, N. G. (1975). Rare earths in the Leadville limestone and its marble derivates. Chemical Geology, 16(1), 27-37. https://doi.org/10.1016/0009-2541(75)90088-1

Kandemir, R., & Yılmaz, C. (2009). Lithostratigraphy, facies, and deposition environment of the lower Jurassic Ammonitico Rosso type sediments (ARTS) in the Gümüşhane area, NE Turkey: implications for the opening of the northern branch of the Neo-Tethys Ocean. Journal of Asian Earth Sciences, 34(4), 586-598. DOI:10.1016/j.jseaes.2008.08.006

Karim, K. H. (2004). Origin of structures and textures of some Kurdistan marbles as inferred from sedimentary ancestor structures, NE-Iraq. Journal of Zankoy Sulaimani, 7(1) Part A, 69-86.

Konrad, B. K. & Dennis, K. B. (1995). Introduction to geochemistry. 3rd ed. McGraw-Hill Book Co., Singapore, 250p

Leyreloup, A. (1977). Chemical composition and consequences of the evolution of the French massif central Precambrian crust. Contributions to Mineralogy and Petrology, 62, 283-300.

Liu, J., Song, J., Yuan, H., Li, X., Li, N., & Duan, L. (2019). Rare earth element and yttrium geochemistry in sinking particles and sediments of the Jiaozhou Bay, North China: Potential proxy assessment for sediment resuspension. Marine Pollution Bulletin, 144, 79-91. https://doi.org/10.1016/j.marpolbul.2019.04.044

Mclennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Geochemistry and mineralogy of rare earth elements, reviews in mineralogy 21, 169-200.

McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4). https://doi.org/10.1029/2000GC000109

Melezhik, V. A., Bingen, B., Fallick, A. E., Gorokhov, I. M., Kuznetsov, A. B., Sandstad, J. S., ... & Moniz, A. (2008). Isotope chemostratigraphy of marbles in northeastern Mozambique: apparent depositional ages and tectonostratigraphic implications. Precambrian Research, 162(3-4), 540-558. DOI:10.1016/j.precamres.2007.11.002

Mirza, T. A., Kalaitzidis, S. P., Mohammed, S. H., Rashid, S. G., & Petrou, X. (2017). Geochemistry and genesis of sulphide ore deposits in Sharosh Village, Qandil Series, Kurdistan Region, NE Iraq. Arabian Journal of Geosciences, 10(19), 1-19. DOI:10.1007/s12517-017-3210-y

Mirza, T. A., & Rashid, S. G. (2018). Mineralogy, Fluid inclusions and stable isotopes study constraints on genesis of sulfide ore mineral, Qaladiza area Qandil Series, Iraqi Kurdistan Region. Arabian Journal of Geosciences, 11(7), 1-15. DOI:10.1007/s12517-018-3490-x

Mirza, T. A. (2019). Geochemical and isotopic characteristics of Zangalline marble, Ranya area, Qandil Series, northeastern Iraqi Kurdistan Region: implications for genesis. Arabian Journal of Geosciences, 12(4), 1-11. https://doi.org/10.1007/s12517-019-4284-5

Muecke, T. W. (1979). Formation fines and factors controlling their movement in porous media. Journal of petroleum technology, 31(02), 144-150. https://doi.org/10.2118/7007-PA

Murphy, K., & Dymond, J. (1984). Rare earth element fluxes and geochemical budget in the eastern equatorial Pacific. Nature, 307(5950), 444-447. https://doi.org/10.1038/307444a0

Nozaki, Y., Zhang, J., & Amakawa, H. (1997). The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1-2), 329-340. https://doi.org/10.1016/S0012-821X(97)00034-4

Obasi, R. A., & Ogungbuyi, P. I. (2013). Petrogenetic and Distribution of Trace and Rare-Earth Elements in the Marble from Igarra Area, Southwest Nigeria. Journal of Environment and Earth Science, 3(13), 66-76.

Obasi, R. A., & Madukwe, H. Y. (2016). Use of geochemistry to study the provenance, tectonic setting, source-area weathering and maturity of Igarra Marble, Southwest, Nigeria. American Journal of Engineering Research, 5(6), 90, 99.

Özyurt, M., Kırmacı, M. Z., Al-Aasm, I., Hollis, C., Taslı, K., & Kandemir, R. (2020). REE Characteristics of Lower Cretaceous Limestone Succession in Gümüşhane, NE Turkey: Implications for Ocean Paleoredox Conditions and Diagenetic Alteration. Minerals, 10(8), 683. https://doi.org/10.3390/min10080683

Qadhi, T. M. (2008). Testing Jabal Farasan marble deposit for multiple industrial applications. Arabian Journal for Science and Engineering, 33(1C), 79-97.

Shearman, D. J., & Shirmohammadi, N. H. (1969). Distribution of strontium in dedolomites from the French Jura. Nature, 223(5206), 606-608. https://doi.org/10.1038/223606a0

Shields, G., & Stille, P. (2001). Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1-2), 29-48. DOI:10.1016/S0009-2541(00)00362-4

Shields, G., & Webb, G. (2004). Has the REE composition of seawater changed over geological time?. Chemical Geology, 204(1-2), 103-107. https://doi.org/10.1016/j.chemgeo.2003.09.010

Sholkovitz, E. R. (1988). Rare earth elements in the sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea; reinterpretation of terrigenous input patterns to the oceans. American Journal of Science, 288(3), 236-281. DOI:10.2475/AJS.288.3.236

Sholkovitz, E. R., Landing, W. M., & Lewis, B. L. (1994). Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta, 58(6), 1567-1579. https://doi.org/10.1016/0016-7037(94)90559-2

Smirnov, V. A., & Nelidov, V. P. (1962). Report on 1: 20000 prospecting correlation of the Sylaimaniya-Choarta and Penjwin area carried out in 1961. Unpublished report, SOM Lib, Baghdad, 46p.

Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2), 17-33. https://doi.org/10.1016/S0012-821X(01)00588-X

Storey, C. C., & Vos, M. A. (1981). Industrial minerals of the Pembroke-Renfrew area.

Taelman, D., Elburg, M., Smet, I., De Paepe, P., Lopes, L., Vanhaecke, F., & Vermeulen, F. (2013). Roman marble from Lusitania: petrographic and geochemical characterisation. Journal of Archaeological Science, 40(5), 2227-2236. https://doi.org/10.1016/j.jas.2012.12.030

Talbot, C. J., & Alavi, M. (1996). The past of a future syntaxis across the Zagros. Geological Society, London, Special Publications, 100(1), 89-109.

Tanaka, K., & Kawabe, I. (2006). REE abundances in ancient seawater inferred from marine limestone and experimental REE partition coefficients between calcite and aqueous solution. Geochemical Journal, 40(5), 425-435. https://doi.org/10.2343/geochemj.40.425

Tanaka, M., Shimizu, H., & Masuda, A. (1990). Features of the heavy rare-earth elements in seawater. Geochemical Journal, 24(1), 39-46. https://doi.org/10.2343/geochemj.24.39

Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. Blackwell, Oxford, 312pp.

Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America bulletin, 72(2), 175-192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

Tobia, F. H., & Mustafa, B. H. (2019). Provenance and depositional environment of the carbonates from Baluti Formation (Late Triassic), Kurdistan Region, Iraq. The Iraqi Geological Journal, 18-35.

Zhang, K. J., Li, Q. H., Yan, L. L., Zeng, L., Lu, L., Zhang, Y. X., ... & Tang, X. C. (2017). Geochemistry of limestones deposited in various plate tectonic settings. Earth-Science Reviews, 167, 27-46. https://doi.org/10.1016/j.earscirev.2017.02.003

Zhang, J., & Nozaki, Y. (1998). Behavior of rare earth elements in seawater at the ocean margin: a study along the slopes of the Sagami and Nankai troughs near Japan. Geochimica et Cosmochimica Acta, 62(8), 1307-1317. https://doi.org/10.1016/S0016-7037(98)00073-8

How to Cite

APA

Mirza, T. A., Kalaitzidis, S. P., Fatah, . S. S. . and Tsiotou, S. . (2021). Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment. Earth Sciences Research Journal, 25(3), 285–295. https://doi.org/10.15446/esrj.v25n3.88686

ACM

[1]
Mirza, T.A., Kalaitzidis, S.P., Fatah, .S.S. and Tsiotou, S. 2021. Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment. Earth Sciences Research Journal. 25, 3 (Oct. 2021), 285–295. DOI:https://doi.org/10.15446/esrj.v25n3.88686.

ACS

(1)
Mirza, T. A.; Kalaitzidis, S. P.; Fatah, . S. S. .; Tsiotou, S. . Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment. Earth sci. res. j. 2021, 25, 285-295.

ABNT

MIRZA, T. A.; KALAITZIDIS, S. P.; FATAH, . S. S. .; TSIOTOU, S. . Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment. Earth Sciences Research Journal, [S. l.], v. 25, n. 3, p. 285–295, 2021. DOI: 10.15446/esrj.v25n3.88686. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/88686. Acesso em: 16 jul. 2024.

Chicago

Mirza, Tola Ahmed, Stavros P. Kalaitzidis, Sardar S. Fatah, and Sophia Tsiotou. 2021. “Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment”. Earth Sciences Research Journal 25 (3):285-95. https://doi.org/10.15446/esrj.v25n3.88686.

Harvard

Mirza, T. A., Kalaitzidis, S. P., Fatah, . S. S. . and Tsiotou, S. . (2021) “Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment”, Earth Sciences Research Journal, 25(3), pp. 285–295. doi: 10.15446/esrj.v25n3.88686.

IEEE

[1]
T. A. Mirza, S. P. Kalaitzidis, . S. S. . Fatah, and S. . Tsiotou, “Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment”, Earth sci. res. j., vol. 25, no. 3, pp. 285–295, Oct. 2021.

MLA

Mirza, T. A., S. P. Kalaitzidis, . S. S. . Fatah, and S. . Tsiotou. “Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment”. Earth Sciences Research Journal, vol. 25, no. 3, Oct. 2021, pp. 285-9, doi:10.15446/esrj.v25n3.88686.

Turabian

Mirza, Tola Ahmed, Stavros P. Kalaitzidis, Sardar S. Fatah, and Sophia Tsiotou. “Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment”. Earth Sciences Research Journal 25, no. 3 (October 27, 2021): 285–295. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/88686.

Vancouver

1.
Mirza TA, Kalaitzidis SP, Fatah SS, Tsiotou S. Petrographic and geochemical features of Gimo marble, Gole area, Kurdistan Region, Iraq: constraints on its protolith’s origin and depositional environment. Earth sci. res. j. [Internet]. 2021 Oct. 27 [cited 2024 Jul. 16];25(3):285-9. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/88686

Download Citation

CrossRef Cited-by

CrossRef citations2

1. A. V. Maslov, S. A. Dub. (2024). Lithogeochemical Characteristics and Sedimentary Environments of the Uk Formation Limestones (Upper Riphean, Southern Urals). Lithology and Mineral Resources, 59(3), p.281. https://doi.org/10.1134/S0024490224700536.

2. Ferkan Sipahi, Halil İbrahim Zeybek, Mehmet Ali Gücer, Fatih Işık. (2024). Comparison with carbonate rocks hosted iron skarn in the eastern Sakarya Zone (Gümüşhane, NE Turkey): a geomorphologic, geochemical and stable isotopic approach. Carbonates and Evaporites, 39(3) https://doi.org/10.1007/s13146-024-00991-0.

Dimensions

PlumX

Article abstract page views

422

Downloads

Download data is not yet available.