Published

2020-10-12

Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology

Ciclo de erupción de rocas volcánicas basado en tecnología de realidad virtual

DOI:

https://doi.org/10.15446/esrj.v24n3.89468

Keywords:

Virtual Reality, Monocular Vision, Volcanic Rock, Cycle, Eruption, Period (en)
Realidad virtual, Visión monocular, Roca volcanica, Ciclo, Erupción, Período. (es)

Downloads

Authors

  • Jiqiang Yang College of Creative Culture and Communication, Zhejiang Normal University, Jinhua 321000, China
  • Xing Wang School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China

The eruption cycle of volcanic rocks based on virtual reality technology is studied to reveal the spatial distribution of volcanic rocks and the genetic relationship between different lithologic assemblages, and effectively guide volcanic exploration. Taking Xujiaweizi fault depression and Yingshan depression in Songliao Basin as the research area, the monocular vision method of virtual reality technology is used to collect data from the study area. Then, the three-dimensional dynamic scene of the study area was constructed. Based on this, combined with the research steps and division basis of the volcanic eruption cycle, the eruption cycle of the volcanic region in the study area is studied. According to the characteristics of volcanic activity, volcanic facies sequence, and rock rhythm combination in Xujiaweizi fault depression, the first and three sections of Yingcheng formation are divided into three eruption periods according to the contact relationship between sedimentary strata and volcanic rocks in the eruptive intermittent period. Y1C1, Y1C2, Y1C3, Y3C1, Y3C2, and Y3C3 are respectively from bottom to top. Yingshan volcanic rocks in Yingshan depression are divided into three cycles and six periods. Each stage has significant stages and differences, and the eruption intensity is different. The overall performance is gradually enhanced, and the internal cycle is characterized by the first strong and then weak.

Este estudio analiza el ciclo de erupción de las rocas volcánicas basado en tecnología de realidad virtual con el fin de revelar la distribución espacial de las rocas volcánicas y la relación genética entre diferentes conjuntos litológicos y, además, guiar efectivamente la exploración volcánica. Se definió la depresión de falla Xujiaweizi y la depresión de Yingshan en la cuenca Songliao como el área de investigación. El método de visión monocular de la tecnología de realidad virtual se utilizó para recopilar datos del área de estudio, y se construyó la escena dinámica tridimensional del área de estudio. Con base a esto, además de los pasos de investigación y la base de división del ciclo de erupción volcánica, se estudia el ciclo de erupción volcánica del área. De acuerdo con las características de la actividad volcánica, la secuencia de facies volcánicas y la combinación de ritmo de roca en la depresión de la falla Xujiaweizi, las tres secciones de la formación Yingcheng se dividen en tres períodos de erupción de acuerdo con la relación de contacto entre los estratos sedimentarios y las rocas volcánicas en el período eruptivo intermitente. Y1C1, Y1C2, Y1C3, Y3C1, Y3C2 y Y3C3 están, respectivamente, de abajo hacia arriba. Las rocas volcánicas de Yingshan, en la depresión de Yingshan, se dividen en tres ciclos y seis períodos. Cada etapa tiene diferencias significativas y la intensidad de la erupción es diferente. El rendimiento general se mejora gradualmente y el ciclo interno se caracteriza por primero fuerte y luego débil.

References

Bergroth, J. D., Koskinen, H. M. K., & Laarni, J. O. (2018). Use of immersive 3-D virtual reality environments in control room validations. Nuclear Technology, 02, 1-12.

Bolgar, F., Eames, E., Hottier, C., & Semelin, B. (2018). Imprints of quasar duty cycle on the 21 cm signal from the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 478, 5564-5578.

Bracquart, B., Mareau, C., Saintier, N., & Morel, F. (2017). Experimental study of the impact of geometrical defects on the high cycle fatigue behavior of polycrystalline aluminium with different grain sizes. International Journal of Fatigue, 109, 17-25.

Chen, C. J. (2017). Application of virtual local area network technology in smart grid. Chinese Journal of Power Sources, 41, 1646-1648.

Cheng, C., Liu, Z., Guo, Z., & Debnath, N. (2017). Waste-to-energy policy in China: A national strategy for management of domestic energy reserves. Energy Sources Part B-Economics Planning and Policy, 12(10), 925-929.

Englberger, A., & Dörnbrack, A. (2018). Impact of the diurnal cycle of the atmospheric boundary layer on wind-turbine wakes: A numerical modelling study. Boundary-Layer Meteorology, 166, 423-448.

Geurden, T., Bartram, D. J., Vanimisetti, H. B., Fanke, J., Camuset, P., Devos, J., Sawyer, A., Von Samson-Himmelstjerna, G., Demeler, J., & Charlier, J. (2017). A multi-country study to assess the effect of a treatment with moxidectin pour-on during the dry period on milk production in dairy cows. Veterinary Parasitology, 237, 104-109.

Liu, C. H., Qi, Y., & Ding, W. R. (2017). Infrared and visible image fusion method based on saliency detection in sparse domain. Infrared Physics & Technology, 83, 94-102.

Lozano-Bilbao, E., Gutierrez, A. J., Hardisson, A., Rubio, C., Gonzalez-Weller, D., Aguilar, N., Escanez, A., Espinosa, J. M., Canales, P., & Lozano, G. (2017). Influence of the submarine volcanic eruption off El Hierro (Canary Islands) on the mesopelagic cephalopod’s metal content. Marine Pollution Bulletin, 129, 474-479.

Pavey, T. G., Kolbe-Alexander, T. L., Uijtdewilligen, L., & Brown, W. J. (2017). Which women are highly active over a 12-year period? A prospective analysis of data from the australian longitudinal study on women’s health. Sports Medicine, 47, 1-14.

Peng, W., Liu, Z., Motahari-Nezhad, M., Banisaeed, M., Shahraki, S., & Beheshti, M. (2016). A detailed study of oxy-fuel combustion of biomass in a circulating fluidized bed (CFB) combustor: Evaluation of catalytic performance of metal nanoparticles (Al, Ni) for combustion efficiency improvement. Energy, 109, 1139-1147.

Rocholl, A., Schaltegger, U., Gilg, H. A., Wijbrans, J., & Böhme, M. (2017). The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene. International Journal of Earth Sciences, 107, 1-21.

Skelin, M., Lucijanić, T., Liberati-Čizmek, A. M., Klobučar, S. M., Lucijanić, M., Jakupović, L., Bakula, M., Lončar, J. V., Marušić, S., Matić, T., Romić, Z., Dumić, J., Rahelić, D. (2018). Effect of timing of levothyroxine administration on the treatment of hypothyroidism: a three-period crossover randomized study. Endocrine, 62, 432-439.

Sun, B. G. (2017). Revenue optimization algorithm for IaaS providers based on alliance perception in hybrid cloud environment. Journal of Jilin University (Science Edition), 55, 1491-1498.

Tian, Y., Xiao, Z., Wang, H., Peng, X., Guan, L., Huangfu, Y., Shi, G., Chen, K., Bi, X., & Feng, Y. (2017). Influence of the sampling period and time resolution on the PM source apportionment: Study based on the high time-resolution data and long-term daily data. Atmospheric Environment, 165, 301-309.

Wang, G., Wang, F., Shen, F., Jiang, T., Chen, Z., & Hu, P. (2020). Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renewable Energy, 146, 2351-2361.

Wendt, A., Tassara, A., Báez, J. C., Basualto, D., Lara, L. E., & Garcia, F. (2017). Possible structural control on the 2011 eruption of Puyehue-Cordón Caulle Volcanic Complex (southern Chile) determined by InSAR, GPS and seismicity. Geophysical Journal International, 208, 134-147.

Xiang, Y., Cai, J., Guan, Y., Liu, W., Han, Y., & Liang, Y. (2018). Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion. Applied Energy, 212, 465-477.

Yang, Z. W., Chen, G. D., Wang, N., & Lin, H. (2018). Realistic simulation of heart display in virtual surgery. Computer Simulation, 35, 334-339.

Zhang, D. P., Xu, P. L., & Ge, L. Q. (2019). Research on quality assessment of elevator maintenance based on virtual technology. Automation & Instrumentation, 231, 42-44.

Zhou, C., Xu, H. D., Liu, H., & Li, C. (2017). Research on islanding detection methods for grid-connected distributed generation. Journal of Power Supply, 15, 125-131.

Zhou, X. L., & Zhang, H. (2017). The study on the model of periodic BIT data analysis relation to time sequence. Journal of China Academy of Electronics and Information Technology, 12, 128-131.

Zhu, Z., Ma, Y., Qu, Z., Fang, L., Zhang, W., & Yan, N. (2017). Study on a new wet flue gas desulfurization method based on the Bunsen reaction of sulfur-iodine thermochemical cycle. Fuel, 195, 33-37.

Zong, H., Cao, Y., & Liu, Z. (2018). Energy security in Group of Seven (G7): A quantitative approach for renewable energy policy. Energy Sources Part B-Economics Planning and Policy, 13(3), 173-175.

How to Cite

APA

Yang, J. and Wang, X. (2020). Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology. Earth Sciences Research Journal, 24(3), 277–284. https://doi.org/10.15446/esrj.v24n3.89468

ACM

[1]
Yang, J. and Wang, X. 2020. Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology. Earth Sciences Research Journal. 24, 3 (Oct. 2020), 277–284. DOI:https://doi.org/10.15446/esrj.v24n3.89468.

ACS

(1)
Yang, J.; Wang, X. Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology. Earth sci. res. j. 2020, 24, 277-284.

ABNT

YANG, J.; WANG, X. Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology. Earth Sciences Research Journal, [S. l.], v. 24, n. 3, p. 277–284, 2020. DOI: 10.15446/esrj.v24n3.89468. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/89468. Acesso em: 28 mar. 2025.

Chicago

Yang, Jiqiang, and Xing Wang. 2020. “Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology”. Earth Sciences Research Journal 24 (3):277-84. https://doi.org/10.15446/esrj.v24n3.89468.

Harvard

Yang, J. and Wang, X. (2020) “Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology”, Earth Sciences Research Journal, 24(3), pp. 277–284. doi: 10.15446/esrj.v24n3.89468.

IEEE

[1]
J. Yang and X. Wang, “Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology”, Earth sci. res. j., vol. 24, no. 3, pp. 277–284, Oct. 2020.

MLA

Yang, J., and X. Wang. “Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology”. Earth Sciences Research Journal, vol. 24, no. 3, Oct. 2020, pp. 277-84, doi:10.15446/esrj.v24n3.89468.

Turabian

Yang, Jiqiang, and Xing Wang. “Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology”. Earth Sciences Research Journal 24, no. 3 (October 12, 2020): 277–284. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/89468.

Vancouver

1.
Yang J, Wang X. Eruption Cycle of Volcanic Rocks Based on Virtual Reality Technology. Earth sci. res. j. [Internet]. 2020 Oct. 12 [cited 2025 Mar. 28];24(3):277-84. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/89468

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 2
  • Mendeley - Readers: 2

Article abstract page views

366

Downloads