Published

2020-10-12

Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning

Clasificación de verosimilitud máxima de imágenes en teledetección del suelo con base en aprendizaje profundo automático

DOI:

https://doi.org/10.15446/esrj.v24n3.89750

Keywords:

Deep learning, Soil remote sensing image, Maximum likelihood estimation, Classification method (en)
Aprendizaje profundo, Imagen de teledetección del suelo, Estimación de máxima verosimilitud, Método de clasificación. (es)

Downloads

Authors

  • Shujun Liang Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450002, China
  • Jing Cheng Engineering Training Center, Zhengzhou University of Light Industry, Zhengzhou 450002, China
  • Jianwei Zhang Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Soil remote sensing image classification is the most difficult in the National Soil Census work. Current soil remote sensing image classification methods based on deep learning and maximum likelihood estimation are challenging to meet the actual needs. Therefore, this paper combines deep learning with maximum likelihood estimation and proposes a maximum likelihood classification method for soil remote sensing images based on deep learning. The method is divided into four parts. Firstly, the pretreatment of soil remote sensing image is carried out, including three processes: image gray, image denoising, and image correction; secondly, the target of soil remote sensing image is detected by deep learning algorithm; thirdly, the maximum likelihood algorithm is used to classify soil remote sensing image; finally, the classification performance is tested by an example. The results show that this method can effectively segment the remote sensing image of soil, and the segmentation accuracy is high, which proves the effectiveness and superiority of the method.

La clasificación de imágenes de detección remota de suelos es la más difícil en el trabajo del Censo Nacional de Suelos en China. Los métodos vigentes de clasificación de imágenes de teledetección del suelo basados en el aprendizaje profundo y la estimación de máxima probabilidad no satisfacen las necesidades actuales. Por lo tanto, este documento combina el aprendizaje profundo con la estimación de máxima verosimilitud y propone un método de clasificación para estas imágenes de teledetección. En primer lugar, se lleva a cabo el preprocesamiento de la imagen de teledetección del suelo, lo que incluye tres procesos: imagen gris, eliminación de ruido y corrección de imagen; en segundo lugar, el objetivo de la imagen del suelo se detecta mediante un algoritmo de aprendizaje profundo; tercero, el algoritmo de máxima verosimilitud se usa para clasificar la imagen de detección remota del suelo; y, finalmente, el rendimiento de la clasificación se prueba con un ejemplo. Los resultados muestran que este método puede segmentar efectivamente la imagen de detección remota del suelo, y la precisión de la segmentación es alta, lo que demuestra la efectividad y superioridad del método.

References

Cheng L. Y., Meng X. Y., & Da, X. M. (2018). Simulation of efficient classification for image characteristics of fruit in fruit pest. Computer Simulation, 35(02):425-428.

Chen, W., Xie, Z., Ma, L., Liu, J., & Liang, X. (2019). A faster maximum-likelihood modulation classification in flat fading non-gaussian channels. IEEE Communications Letters, 23(3):454-457.

Demattê, J. A. M., Sayão, V. M., Rizzo, R., & Fongaro, C. T. (2017). Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing. Geoderma, 302:39-51.

Fitak, R. R., & Johnsen, S. (2017). Bringing the analysis of animal orientation data full circle: model-based approaches with maximum likelihood. Journal of Experimental Biology, 220(21):jeb.167056.

Handelman, T., & Chor, B. (2017). Cases in which ancestral maximum likelihood will be confusingly misleading. Journal of Theoretical Biology, 420:318-323.

He, J., Liu, G., Li, W., Tang, C., & Lu, J. (2018). An evaluation approach for segmentation results of high-resolution remote sensing images based on the degree distribution of land cover networks. International Journal of Modern Physics B, 32(25):1850283.

Li W, Hu X, Du J, et al (2017) Adaptive remote-sensing image fusion based on dynamic gradient sparse and average gradient difference. International Journal of Remote Sensing 38(23):7316-7332.

Ma, X., Liu, W., Li, S., & Zhou, Y. (2018). Hypergraph p-laplacian regularization for remote sensing image recognition. IEEE Transactions on Geoscience and Remote Sensing, 1-11.

McCord, S. E., Buenemann, M., Karl, J. W., Browning, D. M., & Hadley, B. C. (2017). Integrating remotely sensed imagery and existing multiscale field data to derive rangeland indicators: application of bayesian additive regression trees. Rangeland Ecology & Management, 70(5):S1550742417300222.

Palagan, C. A., & Geetha, K. P. (2016) A prediction method using instantaneous mixing plus auto regressive approach in frequency domain for separating speech signals by short time fourier transform. Biomedical Research-India, 27(4):1216-1222.

Pritikin, J. N., Brick, T. R., & Neale, M. C. (2018). Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random. Behavior Research Methods, 50(2):490-500.

Sato, A. (2012). A method to quantify risks of financial assets: An empirical analysis of Japanese security prices. 2011 International Conference on Management, Manufacturing and Materials Engineering, ICMMM 2011, December 8, 2011 - December 10, 2011, Zhengzhou, China.

Temmer, M., Thalmann, J. K., Dissauer, K., Veronig, A. M., Tschernitz, J., Hinterreiter, J., & Rodriguez, L. (2017). On Flare-CME characteristics from sun to earth combining remote-sensing image data with In Situ measurements supported by modeling. Solar Physics, 292(7):93.

Wang, T., Strobl, C., Zeileis, A., & Merkle, E. C. (2017). Score-based tests of differential item functioning via pairwise maximum likelihood estimation. Psychometrika, 83(1):132-155.

Xu, Y., Smith, S. E., Grunwald, S., Abd-Elrahman, A., & Wani, S. P. (2017). Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings. Journal of Environmental Management, 200:423.

Zhao, Y., Zeng, X., Qiang, G., & Xu, M. (2018). An integration of fast alignment and maximum-likelihood methods for electron subtomogram averaging and classification. Bioinformatics, 34(13):i227-i236.

Zhu, D. (2016) A two-component mixture model for density estimation and classification. Journal of Interdisciplinary Mathematics, 19(2):311-319.

Zhu, H., Jiao, L., Ma, W., Liu, F., & Zhao, W. (2019). A novel neural network for remote sensing image matching. IEEE Transactions on Neural Networks and Learning Systems, PP(99):1-13.

How to Cite

APA

Liang, S., Cheng, J. and Zhang, J. (2020). Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning. Earth Sciences Research Journal, 24(3), 357–365. https://doi.org/10.15446/esrj.v24n3.89750

ACM

[1]
Liang, S., Cheng, J. and Zhang, J. 2020. Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning. Earth Sciences Research Journal. 24, 3 (Oct. 2020), 357–365. DOI:https://doi.org/10.15446/esrj.v24n3.89750.

ACS

(1)
Liang, S.; Cheng, J.; Zhang, J. Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning. Earth sci. res. j. 2020, 24, 357-365.

ABNT

LIANG, S.; CHENG, J.; ZHANG, J. Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning. Earth Sciences Research Journal, [S. l.], v. 24, n. 3, p. 357–365, 2020. DOI: 10.15446/esrj.v24n3.89750. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/89750. Acesso em: 9 jul. 2024.

Chicago

Liang, Shujun, Jing Cheng, and Jianwei Zhang. 2020. “Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning”. Earth Sciences Research Journal 24 (3):357-65. https://doi.org/10.15446/esrj.v24n3.89750.

Harvard

Liang, S., Cheng, J. and Zhang, J. (2020) “Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning”, Earth Sciences Research Journal, 24(3), pp. 357–365. doi: 10.15446/esrj.v24n3.89750.

IEEE

[1]
S. Liang, J. Cheng, and J. Zhang, “Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning”, Earth sci. res. j., vol. 24, no. 3, pp. 357–365, Oct. 2020.

MLA

Liang, S., J. Cheng, and J. Zhang. “Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning”. Earth Sciences Research Journal, vol. 24, no. 3, Oct. 2020, pp. 357-65, doi:10.15446/esrj.v24n3.89750.

Turabian

Liang, Shujun, Jing Cheng, and Jianwei Zhang. “Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning”. Earth Sciences Research Journal 24, no. 3 (October 12, 2020): 357–365. Accessed July 9, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/89750.

Vancouver

1.
Liang S, Cheng J, Zhang J. Maximum Likelihood Classification of Soil Remote Sensing Image Based on Deep Learning. Earth sci. res. j. [Internet]. 2020 Oct. 12 [cited 2024 Jul. 9];24(3):357-65. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/89750

Download Citation

CrossRef Cited-by

CrossRef citations12

1. S. Rajalakshmi, S. Nalini, Ahmed Alkhayyat, Rami Q. Malik. (2023). Hyperspectral Remote Sensing Image Classification Using Improved Metaheuristic with Deep Learning. Computer Systems Science and Engineering, 46(2), p.1673. https://doi.org/10.32604/csse.2023.034414.

2. Junsong Chen, Jizheng Yi, Aibin Chen, Ze Jin. (2023). EFCOMFF-Net: A Multiscale Feature Fusion Architecture With Enhanced Feature Correlation for Remote Sensing Image Scene Classification. IEEE Transactions on Geoscience and Remote Sensing, 61, p.1. https://doi.org/10.1109/TGRS.2023.3255211.

3. Liang Tian, Xiaorou Zhong, Ming Chen, Pengwei Wang. (2021). Semantic Segmentation of Remote Sensing Image Based on GAN and FCN Network Model. Scientific Programming, 2021, p.1. https://doi.org/10.1155/2021/9491376.

4. Wei Han, Xiaohan Zhang, Yi Wang, Lizhe Wang, Xiaohui Huang, Jun Li, Sheng Wang, Weitao Chen, Xianju Li, Ruyi Feng, Runyu Fan, Xinyu Zhang, Yuewei Wang. (2023). A survey of machine learning and deep learning in remote sensing of geological environment: Challenges, advances, and opportunities. ISPRS Journal of Photogrammetry and Remote Sensing, 202, p.87. https://doi.org/10.1016/j.isprsjprs.2023.05.032.

5. D. Sivabalaselvamani, L. Rahunathan, K. Nanthini, T. Harshini, C. Hariprasath. (2023). Soil Classification using Deep Learning Techniques. 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). , p.582. https://doi.org/10.1109/ICAISS58487.2023.10250710.

6. Maereg Teklay Amare, Solomon Tekalign Demissie, Solomon Asfaw Beza, Sitotaw Haile Erena. (2023). Land Cover Change Detection and Prediction in the Fafan Catchment of Ethiopia. Journal of Geovisualization and Spatial Analysis, 7(2) https://doi.org/10.1007/s41651-023-00148-y.

7. Bijeesh Kozhikkodan Veettil, Dong Doan Van, Ngo Xuan Quang, Pham Ngoc Hoai. (2023). Remote sensing of plastic‐covered greenhouses and plastic‐mulched farmlands: Current trends and future perspectives. Land Degradation & Development, 34(3), p.591. https://doi.org/10.1002/ldr.4497.

8. Han Huijun, Zhang Shuo, Xie Shiqin. (2023). Comparative Study of Different Ground Objects Classification Based on UAV Orthophoto. Proceedings of the 2023 8th International Conference on Multimedia and Image Processing. , p.52. https://doi.org/10.1145/3599589.3599598.

9. Nizar POLAT, Yunus KAYA. (2021). Investigation of the Performance of Different Pixel-Based Classification Methods in Land Use/Land Cover (LULC) Determination. Türkiye İnsansız Hava Araçları Dergisi, 3(1), p.1. https://doi.org/10.51534/tiha.829656.

10. Jing Wang, Pengjiang Qian. (2022). Landscape Classification Method Using Improved U-Net Model in Remote Sensing Image Ecological Environment Monitoring System. Journal of Environmental and Public Health, 2022, p.1. https://doi.org/10.1155/2022/9974914.

11. Lijian Zhang, Guangfu Liu, Miaochao Chen. (2021). Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm. Advances in Mathematical Physics, 2021, p.1. https://doi.org/10.1155/2021/4343255.

12. Noura Bakr, Sahar A. Shahin, Tamer A. Elbana. (2023). Temporal variation of vegetation status and the contemporary soil quality index in a reclaimed area, Egypt. Archives of Agronomy and Soil Science, 69(4), p.566. https://doi.org/10.1080/03650340.2021.2018574.

Dimensions

PlumX

Article abstract page views

702

Downloads

Download data is not yet available.