Published

2022-09-08

Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance

Efectos de una red de Estaciones de Referencia de Operación Continua en exactitud, precisión y desempeño de la Resolución de Ambigüedades

DOI:

https://doi.org/10.15446/esrj.v26n2.89819

Keywords:

ISKI CORS, CORS-TR, network, accuracy, precision. (en)
ISKI CORS; CORS-TR; redes; precision; exactitud; (es)

Downloads

Authors

  • Ömer Gökdaş Dept. of Geomatics Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. e-mail: ogokdas@itu.edu.tr. ORCID ID: 0000-0003-0109-8073 https://orcid.org/0000-0003-0109-8073
  • Mustafa Tevfik Özlüdemir Dept. of Geomatics Engineering, IGS ISTA Satellite Observation and Processing Laboratory, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Email: tozlu@itu.edu.tr. ORCID ID: 0000-0002-1413-9244 https://orcid.org/0000-0002-1413-9244

The geometric design of the Continuously Operating Reference Station (CORS) network is one of the most critical factors that impact accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. In this study, the authors investigate the subject of geometric design by using both local ISKI CORS and national CORS-Turkey (CORS-TR) networks, and they redesign the ISKI CORS network by increasing interstation distances. For three systems, real-time Virtual Reference Station (VRS) solutions have been obtained and tested with Analysis of Variance (ANOVA). As a result, the 8-station ISKI CORS provides the most accurate results in the vertical component. In contrast, for TTFA performance, the CORS-TR network shows worse outcomes than the others. Due to the increase in the interstation distances, the increase in the base length caused worse results in FIX solution ratios for redesigned ISKI CORS. In summary, the authors have stated that the 8-station ISKI CORS network performs better, especially regarding vertical accuracy. Furthermore, the authors state that the TTFA performance and FIX solution ratios are high, and the ISKI CORS geometric design is optimal.

El diseño geométrico de una red de Estaciones de Referencia de Operación Continua (CORS, del inglés Continuously Operating Reference Station) es uno de los fáctores más críticos que impactan la exactitud, precisión y desempeño de la Resolución de Ambigüedades (TTFA, del inglés Time to Fix Ambiguity). En este estudio los autores investigan el diseño geométrico de la red local ISKI CORS y la nacional CORS-Turkey (CORS-TR) y rediseñan la red ISKI CORS al incrementar las distancias entre estaciones. En los tres factores se obtuvieron las soluciones en tiempo real de las Estaciones de Referencia Virtual (VRS, Virtual Reference Station) y se evaluaron con el Análisis de la Varianza (ANOVA). Como resultado en el componente vertical, la red ISKI CORS de ocho estaciones registra los resultados más exactos. En contraste, para el desempeño TTFA la red CORS-TR muestra los peores resultados frente a los otros factores evaluados. Debido al incremento de las distancias entre estaciones, el incremento en la longitud de base generó los peores resultados en los radios de resolución para la red rediseñada ISKI CORS. En resumen, los autores han establecido que la red ISKI CORS de ocho estaciones presenta el mejor desempeño, especialmente en términos de precisión vertical. Además, los autores definieron que el desempeño TTFA y los radios de resolución son altos, y que el diseño geométrico ISKI CORS es el óptimo.

References

Allahyari, M., Olsen, M. J., Gillins, D. & Dennis, M. D. (2018). Tale of Two RTNs: Rigorous Evaluation of Real-Time Network GNSS Observations. Journal of Surveying Engineering, 144, 2. http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000249 DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000249

Bae, T. S., Brzezinska, D. G., Mader, G., & Dennis, M. (2015). Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights. Sensors, 15, 27215-27229. http://dx.doi.org/10.3390/s151027215 DOI: https://doi.org/10.3390/s151027215

CORS-TR. (2019, December 21). http://www.tusaga-aktif.gov.tr/Map/SensorMap.aspx

Dach, R., S., Lutz, P., Walser, P. & Fridez. (2015). Bernese GNSS Software Version 5.2. User manual. Astronomical Institute, University of Bern, Bern Open Publishing. ISBN: 978-3-906813-05-9. http://dx.doi.org/10.7892/boris.72297

Edwards, S. J., Clarke, P. J., Penna, N. T., & Goebell, S. (2010). An Examination of Network RTK GPS Services in Great Britain. Survey Review, 42(316), 107-121. http://dx.doi.org/10.1179/003962610X12572516251529 DOI: https://doi.org/10.1179/003962610X12572516251529

Eren, K., Uzel, T., Gülal, E., Yıldırım, Ö., & Cingöz, A. (2009). Results from Comprehensive Global Navigation Satellite System Test in the CORS-TR Network: Case Study. Journal of Surveying Engineering, 135(2), http://dx.doi.org/10.1061/(ASCE)0733-9453(2009)135:1(10) DOI: https://doi.org/10.1061/(ASCE)0733-9453(2009)135:1(10)

Featherstone, W. E., & Stewart, M. P. (2001). Combined Analysis of Real-Time Kinematic GPS Equipment and Its Users for Height Determination. Journal of Surveying Engineering, 127(2). http://dx.doi.org/10.1061/(ASCE)0733-9453(2001)127:2(31) DOI: https://doi.org/10.1061/(ASCE)0733-9453(2001)127:2(31)

Garrido, M. S., Gimenez, E., Lacy, M. C., & Gil, A. J. (2011). Testing precise positioning using RTK and NRTK corrections provided by MAC and VRS approaches in SE Spain. Journal of Spatial Science, 56(2), 169-184. http://dx.doi.org/10.1080/14498596.2011.623341 DOI: https://doi.org/10.1080/14498596.2011.623341

Gökdaş, Ö., & Özlüdemir, M. T. (2020). Velocity Estimation Performance of GNSS Online Services (APPS and AUSPOS). Survey Review, 53(378), 280-288. https://doi.org/10.1080/00396265.2020.1809233 DOI: https://doi.org/10.1080/00396265.2020.1809233

Gumus, K., & Selbesoglu, M. O. (2019). Evaluation of NRTK GNSS Positioning Methods for Displacement Detection by a Newly Design Displacement Monitoring System. Measurement, 142, 131-137. http://dx.doi.org/10.1016/j.measurement.2019.04.041 DOI: https://doi.org/10.1016/j.measurement.2019.04.041

ISKI CORS. Accessed December 21, 2019. https://ukbs.iski.gov.tr/ukbs-nedir.aspx

ITRF. Accessed December 21, 2019. http://www.epncb.oma.be/_productsservices/coord_trans/index.php

Lachapelle, G., Alves, P., Fortes, L. P., & Cannon, M. E. (2000). DGPS RTK Positioning Using a Reference Network. Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS). Session C3, Salt Lake City, pp. 1165-1171.

Ogutcu, S. (2019). Temporal Correlation Length of Network Based RTK Techniques. Measurement, 134, 539-547. http://dx.doi.org/10.1016/j.measurement.2018.10.099 DOI: https://doi.org/10.1016/j.measurement.2018.10.099

Ogutcu, S., & Kalaycı, İ. (2016). Investigation of Network-Based RTK Techniques: A Case Study in Urban Area. Arabian Journal of Geosciences, 9(199), 539-547. http://dx.doi.org/10.1007/s12517-015-2262-0 DOI: https://doi.org/10.1007/s12517-015-2262-0

Ogutcu, S., & Kalaycı, İ. (2018). Accuracy and precision of network-based RTK techniques as a function of baseline distance and occupation time. Arabian Journal of Geosciences, 11, 354. http://dx.doi.org/10.1007/s12517-018-3712-2 DOI: https://doi.org/10.1007/s12517-018-3712-2

Raquet, J. (1998). Development of a Method for Kinematic GPS Carrier-Phase Ambiguity Resolution Using Multiple Reference Receivers. PhD Thesis, UCGE Report Number 20116, University of Calgary.

RTCM. Accessed December 21, 2019. www.rtcm.org

RTKLIB. Accessed December 21, 2019. http://www.rtklib.com

Satalich, J., & Ricketson, R. (1998). Field Test of Trimble 4000 Real-Time Kinematic GPS Survey System. Journal of Surveying Engineering, 124(1). http://dx.doi.org/10.1061/(ASCE)0733-9453(1998)124:1(40) DOI: https://doi.org/10.1061/(ASCE)0733-9453(1998)124:1(40)

Tsakiri, M. (2011). Evaluation of GPS/Galileo RTK Network Configuration: Case Study in Greece. Journal of Surveying Engineering, 137(4). http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000054 DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000054

Wanninger, L. (1999). The Performance of Virtual Reference Stations in Active Geodetic GPS-networks under Solar Maximum Conditions. Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS), 1419-1427.

Wübbena, G., Bagge, A., Seeber, G., Boder, V., & Hankemeier, P. (1996). Reducing Distance Dependent Errors for Real Time Precise DGPS Applications by Establishing Reference Stations Networks. Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS), 1845-1854.

How to Cite

APA

Gökdaş, Ömer and Özlüdemir, M. T. (2022). Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. Earth Sciences Research Journal, 26(2), 131–138. https://doi.org/10.15446/esrj.v26n2.89819

ACM

[1]
Gökdaş, Ömer and Özlüdemir, M.T. 2022. Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. Earth Sciences Research Journal. 26, 2 (Sep. 2022), 131–138. DOI:https://doi.org/10.15446/esrj.v26n2.89819.

ACS

(1)
Gökdaş, Ömer; Özlüdemir, M. T. Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. Earth sci. res. j. 2022, 26, 131-138.

ABNT

GÖKDAŞ, Ömer; ÖZLÜDEMIR, M. T. Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. Earth Sciences Research Journal, [S. l.], v. 26, n. 2, p. 131–138, 2022. DOI: 10.15446/esrj.v26n2.89819. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/89819. Acesso em: 31 mar. 2025.

Chicago

Gökdaş, Ömer, and Mustafa Tevfik Özlüdemir. 2022. “Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance”. Earth Sciences Research Journal 26 (2):131-38. https://doi.org/10.15446/esrj.v26n2.89819.

Harvard

Gökdaş, Ömer and Özlüdemir, M. T. (2022) “Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance”, Earth Sciences Research Journal, 26(2), pp. 131–138. doi: 10.15446/esrj.v26n2.89819.

IEEE

[1]
Ömer Gökdaş and M. T. Özlüdemir, “Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance”, Earth sci. res. j., vol. 26, no. 2, pp. 131–138, Sep. 2022.

MLA

Gökdaş, Ömer, and M. T. Özlüdemir. “Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance”. Earth Sciences Research Journal, vol. 26, no. 2, Sept. 2022, pp. 131-8, doi:10.15446/esrj.v26n2.89819.

Turabian

Gökdaş, Ömer, and Mustafa Tevfik Özlüdemir. “Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance”. Earth Sciences Research Journal 26, no. 2 (September 8, 2022): 131–138. Accessed March 31, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/89819.

Vancouver

1.
Gökdaş Ömer, Özlüdemir MT. Effects of the Continuously Operating Reference Station (CORS) network on the accuracy, precision, and Time to Fix Ambiguity (TTFA) performance. Earth sci. res. j. [Internet]. 2022 Sep. 8 [cited 2025 Mar. 31];26(2):131-8. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/89819

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 1
  • Mentions
  • News: 1

Article abstract page views

211

Downloads